深層学習に基づくニューラルネットワークのハイパーパラメータをベイズ最適化で高速に最適化する[v2.11.1] (DCEKit)

深層学習に基づくニューラルネットワークで回帰モデルを構築するときの話です。他の回帰分析手法と同様にして、scikit-learn でモデルを構築できると、何かと便利だったりしますので、今回は scikit-learn の MLPRegres...

モデルの解釈は教師なし学習、データの可視化やクラスタリングと同じ位置づけとして実施しましょう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と材料の物性・活性・特性や製品の品質などの y との間で、データセットを用いて機械学習により数理モ...

清水亮太 氏を明治大学生田キャンパスにお招きして講演していただきました

2022年12月5日(月)に、東京工業大学で准教授をされている清水亮太 氏を明治大学生田キャンパスにお招きしまして、ゼオライトやその合成・設計・解析に関するご講演をしていただきました。清水先生が研究されているロボット-AIによる自律的物質・...

マテリアルズインフォマティクスとプロセスインフォマティックスを融合して材料の合成条件と製品のプロセス条件を同時に設計する手法を開発しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはIntegration of Materials and Process Informatics: Metal Oxide and Process Desig...

バッチプロセスの終点予測やバッチプロファイルの設計

以下の記事で紹介させていただいた、バッチプロセスの終点予測とバッチプロファイルの設計について、ここ一週間で多くの反響をいただきましたので、補足しながら丁寧に説明したいと思います。まず今回のバッチプロセスで前提としているのは、バッチプロセスに...

3年ぶりの海外!ICPAC KK 2022@Kota Kinabalu に学生たちといってきました!

2022 年 11 月 21 日から 27 日までマレーシアのコタ・キナバルで開催されていた International Congress on Pure & Applied Chemistry Kota Kinabalu 2022 (IC...

バッチプロセスにおいてバッチ時間の異なるバッチを含むデータセットを用いた、バッチプロセスの終点予測やバッチプロファイル(時間含む)を設計する手法を開発しました [金子研論文]

金子研の論文が Computers & Chemical Engineering に掲載されましたので、ご紹介します。タイトルはDirect prediction of the batch time and process variable...

村岡恒輝 氏を明治大学生田キャンパスにお招きして講演していただきました

2022年10月24日(月)に、東京大学で助教をされている村岡恒輝 氏を明治大学生田キャンパスにお招きしまして、ゼオライトやその合成・設計・解析に関するご講演をしていただきました。村岡先生が研究されているゼオライトの計算科学や機械学習による...

Datachemical LABで欠損値補完ができるようになりました

Datachemical LAB をご利用いただいている方も増え続けており、嬉しい限りです。これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・回帰分析・モデルの逆解析・モ...

回帰モデルを運用するまでの、モデルの評価方法の整理

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と材料の物性・活性・特性や製品品質 y との間で数理モデル y = f(x) を構築し、構築された...
タイトルとURLをコピーしました