まずは機械学習モデルを設計、評価、解釈のどれに用いるか決めましょう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

第6回日本メディカルAI学会学術集会で研究発表をしてきました!

2024年6月21日(金)・22日(土)に、鶴舞(つるまい)駅の近くの鶴舞(つるま)公園にある、名古屋市公会堂(岡谷鋼機名古屋公会堂)で開催された第6回日本メディカルAI学会学術集会で研究発表をしてまいりました。 聖マリアンナ医科大学の先生...

迷っている方、とりあえずデータ解析・機械学習してモデル構築と予測をしてみましょう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

予測精度の高いモデルができればそれでよいのか?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

クラス分類における深層学習に基づくニューラルネットワークのハイパーパラメータをベイズ最適化で高速に最適化する[v2.14.1] (DCEKit)

深層学習に基づくニューラルネットワークでクラス分類モデルを構築するときの話です。他のクラス分類手法と同様にして、scikit-learn でモデルを構築できると、何かと便利だったりしますので、今回は scikit-learn の MLPCl...

データ解析・機械学習におけるベストプラクティスとは

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

[研究室向け]学会発表の参加申し込みの確認方法と注意点

金子研から学会発表の参加申し込みする時、私が内容を確認することになります。金子研の皆さんは今後、私に確認依頼をする際、以下の点に注意して、準備をしてください。他の研究室でも同様の状況が想定されるため、外部の方々にも参考になるかと思い、ブログ...

実験計画法と低次元化は相性が良くありません

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

(適応的)実験計画法において潜在的な実験候補数が非常に膨大な時にはどうすれば良いか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

多重共線性の実践的で実質的な解決方法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました