●学会発表
- 堀川祥汰, 鈴木来, 本島康平, 中野和明, 長屋昌樹, 長嶋比呂志, 金子弘昌, 相澤守, 機械学習により設計した多孔質リン酸カルシウムセラミックスの材料特性とその生体硬組織反応の検証, 無機マテリアル学会 第147回 学術講演会, 2023年11月9日
- Yuya Shiraki, Yuko Kawanami, Kenichi Shinmei, Hiromasa Kaneko, Construction of Dielectric Constant Prediction Models and Design of Monomers for Polymer Materials Using Machine Learning, 2nd International Conference on Polymer Science and Engineering, San Francisco, U.S.A., November 1, 2023.
- Rinta Kawagoe, Kazutoshi Terauchi, Fumiya Hamada, Toshinori Yamaji, Hiromasa Kaneko, Online Sensing of Polymer Properties and Process Design with Machine Learning, 2nd International Conference on Polymer Science and Engineering, San Francisco, U.S.A., November 1, 2023.
- Yuta Sakai, Shota Horikawa, Kitaru Suzuki, Mamoru Aizawa, Hiromasa Kaneko, Prediction of bone formation rate of artificial bone by machine learning considering variation of experimental results, Bioceramics 33, Solothurn, Switzerland, October 18, 2023.
- 原田隆希, 林文隆, 山田哲也, 金子弘昌, 手嶋勝弥, ベイズ最適化によるフッ化物イオン吸着層状複水酸化物結晶の合成, 2O06, 表面技術協会 関東支部 第102回若手講演会, 琉球大学, 2023年9月20日
- S. Horikawa, K. Suzuki, K. Motojima, K. Nakano, M. Nagaya, H. Nagashima, H. Kaneko, M. Aizawa, Construction of a model estimating bone-forming ability of bioceramics utilizing machine learning and its validation by in vivo experiments, Biomaterials International 2023, Hokkaido, July 31, 2023.
- Ayano Yamamoto, Shota Horikawa, Kitaru Suzuki, Mamoru Aizawa, Hiromasa Kaneko, Predictive machine learning model constructure for bone formation rate using scanning electron microscope images, ISIEM2023, Montpellier, France, June 21, 2023
- Shota Horikawa, Kitaru Suzuki, Kohei Motojima, Hiromasa Kaneko, Mamoru Aizawa, Construction of a Model Estimating Bone-Forming Ability of Bioceramics Utilizing Machine Learning and Its Inverse Analysis to Verify Material Properties, ISIEM2023, Montpellier, France, June 21, 2023
- 原田隆希, 林文隆, 山田哲也, 金子大悟, 金子弘昌, 手嶋勝弥, 層状複水酸化物結晶によるイオン交換時のデータ駆動的重要因子理解と実験提案, 日本結晶成長学会 新技術・新材料分科会 第 2 回研究会, 信州大学, 2023年3月3日
- Shunsuke Yuyama, Hiromasa Kaneko, Machine Learning and Process Design Optimization Approaches for Exploration of Gas Membrane Separation Materials, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- Yuki Nakayama, Tatsuya Hirano, Hiromasa Kaneko, Prediction of Herbicide Activity with Descriptors on Local Properties of 3D Chemical Structures, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- Jumpei Yoshizuka, Daiki Nakamura, Hiromasa Kaneko, Fault Detection and Diagnosis for Thermometers with Machine Learning in Metal Production Process, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- Daigo Kaneko, Risa Iwatsubo, Hajime Wagata, Hiromasa Kaneko, Efficient Design of Experiments for LafeO3 Crystallites Via Bayesian Optimization, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- Kohei Motojima, Abhijit Sen, Raghu N. Dhital, Yoichi M. A. Yamad, Hiromasa Kaneko, Optimization of Experimental Conditions with Machine Learning for Organic Synthetic Reactions Using Transition-Metal Catalyst, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- Mitsuki Ikeda, Hiromasa Kaneko, Odor Threshold Prediction Using Machine Learning, International Congress on Pure & Applied Chemistry KotaKinabalu 2022 (ICPAC KK 2022), Kota Kinabalu, Malaysia, November 25, 2022
- 吉塚淳平, 谷脇寛明, 橋本益美, 松本幸太郎, 加藤洋, 金子弘昌, 機械学習に基づく処理原油成分情報のリアルタイム予測モデルの開発(その1), 第52回石油・石油化学討論会, 2022年10月28日
- 湯山春介, 金子弘昌, 機械学習を用いた気体分離プロセスと分離膜材料の同時設計, 化学工学会第53回秋季大会, 2022年9月16日
- 中山祐生, 白木優也, 名取慧, 小野裕己, 須田和哉, 金子弘昌, フィルム製造プロセスにおけるソフトセンサー検討, 化学工学会第53回秋季大会, 2022年9月16日
- 森下敏治, 金子弘昌, 化合物のベイズ最適化における初期サンプル選択に関する議論, 化学工学会第53回秋季大会, 2022年9月16日
- 山本彩乃, 堀川祥汰, 鈴木 来, 相澤 守, 金子弘昌, 画像処理および機械学習におけるバイオマテリアルの高精度骨形成率予測のための特性設計, 日本セラミックス協会 第35回秋季シンポジウム, 2022年9月14日
- 山本統久, 安藤達人, 清水直斗, 松澤伸行, 前嶋宏行, 金子弘昌, DFT計算と機械学習による低再配向エネルギー分子の設計, 日本化学会 第102春季年会, 2022年3月26日
- 谷脇寛明, 金子弘昌, 高分子化合物の重合反応を対象とした逆合成予測モデルの構築, 日本化学会 第102春季年会, 2022年3月26日
- Yuki Nakayama, Hiromasa Kaneko, Design of a Dimethyl Ether production process using process simulation and machine learning, Pacifichem 2021, December 12, 2021
- Daigo Kaneko, Hiromasa Kaneko, Fumitaka Hayashi, Tetsuya Yamada, Katsuya Teshima, Process-informatics approach to design experimental conditions for the development of crystalline materials, Pacifichem 2021, December 12, 2021
- Hiroaki Taniwaki, Hiromasa Kaneko, Design of monomer molecules in consideration of dielectric constants and glass transition temperature, Pacifichem 2021, December 12, 2021
- Shuto Yamakage, Hiromasa Kaneko, Adaptive soft sensor selection based on Bayesian optimization, Pacifichem 2021, December 12, 2021
- Norihsia Yamamoto, Hiromasa Kaneko, Machine learning-based development of refrigerants with safety and high thermal conductivity, Pacifichem 2021, December 12, 2021
- Shunsuke Yuyama, Hiromasa Kaneko, Correlation between the metal and organic components, crystal structure, and gas-adsorption capacity of metal–organic frameworks, Pacifichem 2021, December 12, 2021
- Kohei Motojima, Rina Shiratsuchi, Kitaru Suzuki, Mamoru Aizawa, Hiromasa Kaneko, Prediction of properties and bone formation rate for bioceramics and design of synthesis conditions with machine learning, Pacifichem 2021, December 12, 2021
- Mitsuki Ikeda, Hiromasa Kaneko, Yukari Totsuka, Yuki Betsuyaku, Similarity of MS spectra for structure identification of DNA adducts, Pacifichem 2021, December 12, 2021
- Ryo Iwama, Koji Takizawa, Kenichi Shinmei, Eisuke Baba, Noritoshi Yagihashi, Hiromasa Kaneko, Development of metal oxides for CO2 reduction by combining experiments and machine learning, Pacifichem 2021, December 12, 2021
- Jumpei Yoshizuka, Hiromasa Kaneko, Takahide Oka, Junya Fuse, Yoshito Sawai, Shota Yamanaka, Growth prediction of Spinacia oleracea in plant factories and process design for growth improvement, Pacifichem 2021, December 12, 2021
- 金子大悟, 金子弘昌, 林文隆, 山田哲也, 手嶋勝弥, 機械学習による結晶材料設計の効率化, 第11回CSJ化学フェスタ2021, P6-105, 2021年10月20日
- 杉崎大将, 金子弘昌, 機械学習によるアンモニアボランの脱水素触媒の開発, 第11回CSJ化学フェスタ2021, P6-092, 2021年10月20日
- 湯山春介, 金子弘昌, 金属有機構造体における金属・有機化合物・結晶構造・ガス吸着量の相関関係のモデル化, 第11回CSJ化学フェスタ2021, P5-077, 2021年10月20日
- 谷脇寛明, 金子弘昌, 高分子化合物を対象とした逆合成予測モデルの構築, 第11回CSJ化学フェスタ2021, P4-085, 2021年10月20日
- 本島康平, 白土里奈, 鈴木来, 相澤守, 金子弘昌, 機械学習によるバイオセラミックスの設計, 第11回CSJ化学フェスタ2021, P3-071, 2021年10月19日
- 岩間稜, 金子弘昌, 機械学習を活用したCO2還元用金属酸化物の開発, 第11回CSJ化学フェスタ2021, P2-011, 2021年10月19日
- 山影柊斗, 金子弘昌, 機械学習を活用した高精度ソフトセンサーの設計, 第63回自動制御連合講演会 2D3-1, 2020年11月22日
- 山田信仁, 金子弘昌, 適応型ソフトセンサーと転移学習を組み合わせた複数銘柄生産プロセスの予測, 第63回自動制御連合講演会 2D3-3, 2020年11月22日
- 岩間稜, 金子弘昌, シミュレーションと機械学習を組み合わせたエチレンオキシド製造プロセスの多目的最適化, 第63回自動制御連合講演会 2D4-3, 2020年11月22日
- 山田哲也, 金子弘昌, 土井達也, 林文隆, 手嶋勝弥, データ駆動型手法を活用した環境・エネルギー材料用結晶の開発, 日本結晶成長学会 新技術・新材料分科会 第1回研究会, 東北大学, 2020年2月21日
- Yasuhiro Kanno, Hiromasa Kaneko, “Nonlinear Dynamic Feature Extraction Based on Gaussian Process Dynamical Models for Jit-Based Adaptive Soft Sensors”, AIChE Annual Meeting, 344d, 2019 AIChE Annual Meeting, Hyatt Regency, Orlando, U.S.A., November 12, 2019 内容
- Naoto Shimizu, Hiromasa Kaneko, “Constructing Interpretable and Accurate Model Combining Decision Tree and Random Forest”, AIChE Annual Meeting, 370n, 2019 AIChE Annual Meeting, Hyatt Regency, Orlando, U.S.A., November 12, 2019 内容
- Takumi Kojima, Hiromasa Kaneko, “New Evaluation Method of Soft Sensors Considering Characteristics of Time Series Data”, AIChE Annual Meeting, 370o, 2019 AIChE Annual Meeting, Hyatt Regency, Orlando, U.S.A., November 12, 2019 内容
- 江尾知也, 金子弘昌, “ドッキングシミュレーションと機械学習を組み合わせた定量的構造活性相関”, 日本化学会 第99春季年会, 甲南大学 岡本キャンパス, 2019年3月16日
- 清水直斗, 金子弘昌, “解釈可能性を考慮した高精度物性推定モデルの構築”, 日本化学会 第99春季年会, 甲南大学 岡本キャンパス, 2019年3月16日
- 山田信仁, 金子弘昌, “機械学習を用いたプロパン脱水素反応によるプロピレン製造プロセスの設計”, 化学工学会 第84年会, 芝浦工業大学 豊洲キャンパス, 2019年3月13日
- 菅野泰弘, 金子弘昌, “ガウシアンプロセスダイナミカルモデルに基づく非線形性とプロセス動特性を考慮した適応型ソフトセンサーの開発”, 化学工学会 第84年会, 芝浦工業大学 豊洲キャンパス, 2019年3月13日
- 江尾知也, 金子弘昌, “ドッキングシミュレーションを活用した定量的構造活性相関の精度の向上”, 第46回構造活性相関シンポジウム, 大阪大学銀杏会館, 2018年12月6日
- 山田信仁, 菅野泰弘, 小島巧, 清水直斗, “機械学習を用いたプロパン脱水素反応によるプロピレン製造プロセスの設計”, 化学工学会第50回秋季大会 第17回プロセスデザイン学生コンテスト, 鹿児島大学郡元キャンパス, 2018年9月21日
- 小島巧, 金子弘昌, “時系列データの特徴を考慮した新規ソフトセンサー評価手法の開発”, 化学工学会第50回秋季大会, 鹿児島大学郡元キャンパス, 2018年9月20日
- 小島巧, 金子弘昌, “時間軸を用いたソフトセンサーの新規評価手法の開発”, 第7回ケモインフォマティクス若手の会, 渋谷ヒカリエ, 2018年5月22日
- 清水直斗, 金子弘昌, “少数サンプルにおける活性予測モデルの性能評価および精度向上”, 第7回ケモインフォマティクス若手の会, 渋谷ヒカリエ, 2018年5月22日
- 菅野泰弘, 金子弘昌, “半教師あり学習の新規手法を提案”, 第7回ケモインフォマティクス若手の会, 渋谷ヒカリエ, 2018年5月22日
- 金子弘昌, “Generative Topographic Mapping(GTM)でデータの可視化・回帰分析・モデルの逆解析を一緒にやってみた”, 第7回ケモインフォマティクス若手の会, 渋谷ヒカリエ, 2018年5月22日 内容
- 菅野泰弘, 金子弘昌, “回帰分析における精度向上のための化学構造データ選択手法”, 日本薬学会 第138年会, TKP金沢カンファレンスセンター, 2018年3月28日 内容
- 清水直斗, 金子弘昌, “少数サンプルにおける活性予測モデルの性能評価および精度向上”, 日本薬学会 第138年会, TKP金沢カンファレンスセンター, 2018年3月28日 内容
- 金子弘昌, “装置における測定困難な対象をリアルタイムに推定する人工知能の開発、分子・材料設計への応用”, 第7回超異分野学会 本大会~人とは何か、そして人を取り巻く研究へ~, TEPIA先端技術館, 2018年3月2, 3日 内容
- 金子弘昌, “ビッグデータを活用した分子設計・材料設計・プロセス管理”, 2017年度 明治大学・聖マリアンナ医科大学共同研究会, 明治大学 生田キャンパス, 2017年7月15日
- 金子弘昌, “変数選択手法っていろいろあるけど何を使えばいいの?“, 第5回ケモインフォマティクス若手の会, 渋谷ヒカリエ, 2017年5月16日