Elastic net をすれば、OLS, RR, LASSO はしなくてよいのか?

こちら↓で解説したように、最小二乗法による線形重回帰分析 (Ordinary Least Squares, OLS), リッジ回帰 (Ridge Regression, RR), Least Absolute Shrinkage and S...

結局、「次元の呪い」は何が問題なのか?解決方法は?

データ解析や機械学習をしている方は、「次元の呪い」 という問題があることを聞いたことがあるかもしれません。「次元」という言葉があるように、分子記述子・合成条件・製造条件・プロセス条件・プロセス変数などの変数もしくは特徴量が多いときに生じる問...

時系列データにおけるモデル適用範囲

目的変数 y と説明変数 x のデータを準備して、x と y の間で数理モデル y = f(x) を構築し、モデルに基づいて x の値から y の値を予測したり、y の値が目標値になるような x の値を設計したりします。モデルで予測するとき...

研究者もやさしさが大切

人としてやさしさが大切であることはいうまでもないことですが、研究者だからこそ特にやさしさが必要になることがあります。例えば、研究室の学生にはよく、パワーポイントのスライドを作るときはやさしさが大切、といっています。スライドは何らかの説明をす...

機械学習・転移学習・ベイズ最適化を活用して二酸化炭素還元用金属酸化物を開発しました![積水化学工業&金子研の共同研究論文]

積水化学工業と金子研における共同研究の成果の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはDesign and Analysis of Metal Oxides for CO2 Reduction Using M...

同じ実験条件で繰り返し実験するのは、最後だけでよいのでは?~(適応的)実験計画法のススメ~

高機能性材料の研究・開発をするとき、材料の合成条件等の実験条件を変えながら実験し、結果を確認します。もちろん再現性も大事なので、同じ実験条件で繰り返し実験します。3 回や 5 回が多いと思います。いわゆる n = 3, n = 5 です。た...

既存のデータセットがある場合に実験計画法で今後の実験条件を求める方法

適応的実験計画法の話です。分子設計や材料設計やプロセス設計において、まだデータセットがないとき、最初に実験やシミュレーションするための分子・合成条件・製造条件・プロセス条件といった説明変数 x の値を実験計画法により決めます。その条件で実際...

サンプルごとに目的変数の値が複数あったり分布をもったりするときの解析方法

分子設計、材料設計、プロセス設計、プロセス管理・制御において、分子記述子・実験条件・製造条件・プロセス条件・プロセス変数などの説明変数 x と物性・活性・特性などの目的変数 y の間で、データセットを用いて数理モデル y = f(x) を構...

真の意味で解釈でき、予測精度も高い線形モデルを開発しました![金子研論文]

タイトルを見て、線形モデルは回帰係数 (各特徴量の目的変数に対する重み) が与えられるのだから、線形モデルを解釈できるのは当たり前では??、と考えた方、非常に危険です。以下、必見です。金子研の論文が ACS Omega に掲載されましたので...

Python の環境の準備とspyderやjupyter notebookの起動まで(Windows編とmacOS編)

Python プログラミングを行うための環境を準備する方法はいろいろとあります。有名なのは Anacondaを利用する方法です。一方で、一部の方にとっては Anaconda は有料であり、少し壁があるかもしれません。もちろん Anacond...
タイトルとURLをコピーしました