ケモメトリックス

DFT計算を用いて複数の記述子セットを準備しておくことでベイズ最適化の探索性能の向上に成功しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルは Enhancing the Search Performance of Bayesian Optimization by Creating Differen...

[無料公開] 「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」の“改訂版の発行にあたって”、詳細な目次、第8章の一部

2023 年 8 月 30 日に、金子弘昌著の「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」が出版されました。 オーム社: Amazon: こちらは、以前に出版した書籍 「化学のための Pythonによるデータ解析・...

モデルの逆解析はxの唯一の解を求めることではありません、ご注意ください

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

ベイズ最適化のときカーネル関数に線形項を入れると外挿の方向を定めやすい

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

実験結果が人依存のデータ解析・機械学習の考え方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

過学習(オーバーフィッティング)にとらわれない!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

今のハイパーパラメータの決め方が本当に正しいのか不安になったときの対処法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

ジメチルエーテル製造プロセスをベイズ最適化で頑健に設計すること(ロバストベイズ最適化)に成功しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルは Robust Design of a Dimethyl Ether Production Process Using Process Simulation ...

GAWLS や GAVDS における領域数の決め方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

任意のクラス分類手法で変数重要度(特徴量重要度)を計算する機能をDCEKitに搭載しました![v.2.13.1]~Cross-Validated Permutation Feature Importance (CVPFI) for classification~

どのクラス分類手法でも変数重要度 (特徴量重要度) を計算する機能を DCEKit に搭載しました!こちらの回帰分析における Cross-Validated Permutation Feature Importance (CVPFI) のク...
タイトルとURLをコピーしました