データ解析

実験計画法におけるデータの可視化は難しい

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

スペクトルデータや時系列データなど特徴量間の関係が強いデータのときは直接的逆解析しかありません!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

CVPFI(任意の回帰分析手法・クラス分類手法における特徴量重要度)が複数の目的変数に対応しました!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

Datachemical LABでスペクトルの変換ができるようになりました

いつも Datachemical LAB をご利用いただきありがとうございます。 これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・特徴量計算・回帰分析・モデルの逆解析・...

藤井幹也 氏を明治大学生田キャンパスにお招きして講演していただきました

2023年11月9日(木)に、奈良先端科学技術大学院大学 (NAIST) の先端科学技術研究科物質創成科学領域で教授をされている 藤井幹也 氏を明治大学生田キャンパスにお招きしまして、実験・第一原理計算・機械学習・ロボティックスの融合による...

2nd International Conference on Polymer Science and Engineering @ San Franciscoに学生たちといってきました!

2023 年 11 月 1 日から 3 日までアメリカ合衆国のサンフランシスコで開催されていた 2nd International Conference on Polymer Science and Engineering に修士2年の学生...

機械学習モデルを大域的・局所的に解釈する方法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

機械学習(回帰分析・クラス分類)をする全ての人が、最初に頭に入れるべきこと

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

モデリングを工夫することで、すべてのデータを活用しよう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

手動・自動の特徴量エンジニアリングの考え方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました