研究室

ソフトセンサーにしてほしいことと実際にできること

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

テストデータやダブルクロスバリデーションで何を評価しているのか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

まずは機械学習モデルを設計、評価、解釈のどれに用いるか決めましょう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

第6回日本メディカルAI学会学術集会で研究発表をしてきました!

2024年6月21日(金)・22日(土)に、鶴舞(つるまい)駅の近くの鶴舞(つるま)公園にある、名古屋市公会堂(岡谷鋼機名古屋公会堂)で開催された第6回日本メディカルAI学会学術集会で研究発表をしてまいりました。聖マリアンナ医科大学の先生と...

迷っている方、とりあえずデータ解析・機械学習してモデル構築と予測をしてみましょう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

予測精度の高いモデルができればそれでよいのか?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

クラス分類における深層学習に基づくニューラルネットワークのハイパーパラメータをベイズ最適化で高速に最適化する[v2.14.1] (DCEKit)

深層学習に基づくニューラルネットワークでクラス分類モデルを構築するときの話です。他のクラス分類手法と同様にして、scikit-learn でモデルを構築できると、何かと便利だったりしますので、今回は scikit-learn の MLPCl...

データ解析・機械学習におけるベストプラクティスとは

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

[研究室向け]学会発表の参加申し込みの確認方法と注意点

金子研から学会発表の参加申し込みする時、私が内容を確認することになります。金子研の皆さんは今後、私に確認依頼をする際、以下の点に注意して、準備をしてください。他の研究室でも同様の状況が想定されるため、外部の方々にも参考になるかと思い、ブログ...

実験計画法と低次元化は相性が良くありません

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました