dcelab

学生と話すときの心がまえ~2つの先入観(バイアス)を意識する~

学生と話すとき、2つの先入観もしくはバイアスを意識しています。 1. 大学でやることは難しいという先入観 学生の中には、数式を見ただけで、ギブアップ!の人もいます。微分・積分はよくわからない、統計はとっつきにくい、パソコンは難しい、研究は優...

研究は、他の研究者が築いた信用の上に成り立っている、気付きにくいけれど

だいたいの日本人は、(もちろんお金をもっていれば) コンビニで気楽におにぎりを買い、食べることができます。これは、日本のコンビニであれば 危ないおにぎりはないし 平均的にどれも美味しいはず、といったコンビニに対する “信用” があるからです...

y-randomizationで過学習(オーバーフィッティング), Chance Correlation(偶然の相関)の危険度を評価!

回帰モデル・クラス分類モデルの評価 のなかで、yランダマイゼーション (y-randomization) についてです。y-scrambling と呼んだりもします。 やることは簡単で、目的変数 y の値をサンプル間でシャッフルして、回帰モ...

Generative Topographic Mapping(GTM)でデータの可視化・回帰分析・モデルの適用範囲・モデルの逆解析を一緒に実行する方法 [金子研論文]

今回は、Generative Topographic Mapping (GTM) でデータの可視化・回帰分析・モデルの適用範囲・モデルの逆解析を一緒に実行できる手法を開発し、QSPR 解析・QSAR 解析と分子設計を行った論文が、molec...

ランダムフォレスト(Random Forests, RF)や決定木(Decision Tree, DT)で構築したモデルを逆解析するときは気をつけよう!

回帰モデルやクラス分類モデルを構築したら、モデルの逆解析をすることがあります。逆解析では、説明変数 (記述子・特徴量・実験条件など) X の値から目的変数 (物性・活性など) y の値を推定するのではなく、逆に、y の値から X の値を推定...

化学工学会第50回秋季大会@鹿児島大学 郡元キャンパス で学生の研究発表・学生コンテスト [受賞あり]

2018年9月18, 19, 20日に開催されました化学工学会第50回秋季大会@鹿児島大学 郡元キャンパス に、データ化学工学研究室(金子研)のM1小島・B4山田と参加して参りました。 とても大規模な会議であり、27 会場で並行して(特別)...

本当に標準偏差(分散)が0の説明変数(記述子・特徴量)を削除してよいのか?

教師あり学習をするときの、データ解析のおおざっぱな流れとしては、 データセットをトレーニングデータとテストデータに分ける トレーニングデータを用いて X と y との間でモデル y = f(X) を構築する (おもに回帰分析もしくはクラス分...

[Pythonコードあり] スペクトル解析における波長領域や時系列データ解析におけるプロセス変数とその時間遅れを選択する方法

遺伝的アルゴリズム (Genetic Algorithm, GA) を使って回帰モデルの推定性能がよくなるように、説明変数 (記述子・特徴量・入力変数) を選択する手法を以前解説しました。 今回は、スペクトル解析における波長選択と、時系列デ...

理学的なものと工学的なもの

こちらの新入生へのメッセージの9個目に書いたように、 理学は 「分かる」 ための学問、工学は 「決める」 ための学問です。ただ、それ以外にも、理学的なものと工学的なものとがあるなーと思い、表にまとめました。 ただ、誤解のないように言っておく...

回帰分析における半教師あり学習 (半教師付き学習) のメリットを確認しました!

以前に、半教師あり学習 (半教師付き学習) における4つのメリットについて書きましたが、 その中で回帰分析におけるメリットを議論して、それをQSAR解析・QSPR 解析で確認した論文が、掲載されましたのでご紹介致します。 金子研オンラインサ...
タイトルとURLをコピーしました