データ解析

k最近傍法(k-Nearest Neighbor, k-NN)でクラス分類・回帰分析・モデルの適用範囲(適用領域)の設定をしよう!

今回は、k最近傍法 (k-Nearest Neighbor, k-NN) についてです。k-NN だけで、 クラス分類 回帰分析 モデルの適用範囲(適用領域)の設定の3つもできてしまうんです。そんな有用な k-NN について、pdfとパワー...

Adaboost (Adaptive Boosting) によるアンサンブル学習のやり方を解説します

今回は、アンサンブル学習の方法の一つである Adaboost (Adaptive Boostling) です。アンサンブル学習についてはこちらをご覧ください。Adaboost は単純なアンサンブル学習より精度が上がると言われています。そんな...

2017年度における学生の研究まとめ

本日は明治大学の卒業式+学位記授与式です。データ化学工学研究室 (金子研) の3人の4年生も卒業します。一年間、早いものです。3人とも修士に進学しますので、研究室内の状況としてはあまり変わらないのですが、一つの区切りですので、4年生の一年間...

混合ガウスモデル (Gaussian Mixture Model, GMM)~クラスタリングするだけでなく、データセットの確率密度分布を得るにも重宝します~

クラスタリングについては、階層的クラスタリングと k-means クラスタリングをやりました。今回は、混合ガウスモデル (Gaussian Mixture Model, GMM) というクラスタリングの手法です。GMM を使うことで、データ...

異分野融合ワークショップ「データ科学との融合による化学の新展開」での招待講演@NAIST

2018年3月13, 14日で奈良先端科学技術大学院大学 (NAra Institute of Science and Technology, NAIST) において開催された異分野融合ワークショップ「データ科学との融合による化学の新展開」...

データの見える化・可視化をした結果を評価する指標を開発しました、ハイパーパラメータの設定もこれでOK (Python・MATLABプログラムあり)

応化先生と生田さんが論文 “k-nearest neighbor normalized error for visualization and reconstruction – A new measure for data visualiz...

アンサンブル学習でも、各サブモデルの適用範囲・適用領域をちゃんと考えよう!~Ensemble learning method Considering Applicability Domain of each Submodel (ECADS)~

応化先生と生田さんが論文 “Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels”...

アンサンブル学習 ~三人寄れば文殊の知恵~ たくさんモデルを作って推定性能を上げよう!

応化先生と生田さんがアンサンブル学習 (ensemble learning) について話しています。応化:今日はアンサンブル学習 (ensemble learning) についてです。生田:アンサンブル?音楽関係ですか?応化:いえ、合奏とか...

k平均法 (k-means clustering) 非階層的クラスタリング

応化先生と生田さんが k平均法 (k-means clustering) について話しています。応化:今回は、k平均法 (k-means clustering) についてです。クラスタリングですね。生田:階層的なクラスタリングですか?応化:...

ロバストなモデル・手法・方法ってどういうこと?推定性能が高い、とは違います!

応化先生と生田さんがロバストなモデルについて話しています。応化:今回は、ロバスト (robust) についてです。日本語に訳すと、頑健、ですね。生田:ロバストも頑健も聞いたことがありません!応化:日常生活ではあまり出てきませんよね。統計や機...
タイトルとURLをコピーしました