
予測誤差は全部ノイズ!~ノイズを0にする方向で考えよう!~
分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子や合成条件・製造条件・プロセス条件などの説明変数 x と物性・活性・特性な...
データ化学工学研究室(金子研究室)@明治大学 理工学部 応用化学科
化学・工学データを使える知識に変える世界でたった一つの研究室
分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子や合成条件・製造条件・プロセス条件などの説明変数 x と物性・活性・特性な...
このたび、2021 年 12 月 21 日と 2022 年 5 月 13 日に、それぞれ POL 様が主催された講演会にて、お話させていただ...
分子設計・材料設計・プロセス設計において、分子記述子や合成条件・製造条件・プロセス条件などの特徴量 x と物性・活性・特性などの目的変数 y...
化学・化学工学分野におけるデータ解析・機械学習が、プログラミングなしでできるクラウドサービス「Datachemical LAB」を開発し、提...
環境省の「令和4年度地域資源循環を通じた脱炭素化に向けた革新的触媒技術の開発・実証事業」に、金子が共同実施者として参画する研究課題「革新的多...
分子設計・材料設計・プロセス設計において、分子記述子や合成条件・製造条件やプロセス条件などの特徴量 x と物性・活性・特性などの目的変数 y...
こちら↓で解説したように、最小二乗法による線形重回帰分析 (Ordinary Least Squares, OLS), リッジ回帰 (Rid...
データ解析や機械学習をしている方は、「次元の呪い」 という問題があることを聞いたことがあるかもしれません。「次元」という言葉があるように、分...
目的変数 y と説明変数 x のデータを準備して、x と y の間で数理モデル y = f(x) を構築し、モデルに基づいて x の値から ...
高機能性材料の研究・開発をするとき、材料の合成条件等の実験条件を変えながら実験し、結果を確認します。もちろん再現性も大事なので、同じ実験条件...