プロセス制御・プロセス管理・ソフトセンサー

任意の回帰分析手法で変数重要度(特徴量重要度)を計算する機能をDCEKitに搭載しました![v.2.10.1]~Cross-validated Permutation Feature Importance(CVPFI)~

どの回帰分析手法でも変数重要度 (特徴量重要度) を計算する機能を DCEKit に搭載しました!重要度が 0 を有意に超えるようであれば、その説明変数 x はモデルの予測精度に貢献しているといえます。しかも、x の間に相関関係があっても、...

[無料公開] 「化学・化学工学のための実践データサイエンス―Pythonによるデータ解析・機械学習―」 の “まえがき”、目次、第1・2章

2022 年 10 月 5 日に、金子弘昌著の「化学・化学工学のための実践データサイエンス―Pythonによるデータ解析・機械学習―」が出版されます。 朝倉書店: Amazon: これまで他に、三冊の本...

Cross-validated Permutation Feature Importance(CVPFI)~任意の回帰分析手法で、説明変数間の相関関係を考慮しながら安定的に変数重要度(特徴量重要度)を計算する手法[金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルは Cross-validated permutation feature importance consid...

Datachemical LAB にソフトセンサーと異常検知の機能が追加されました![オンライン予測も可能]

化学・化学工学分野におけるデータ解析・機械学習クラウドサービス「Datachemical LAB」の新機能についてです。プレスリリース↓ いろいろな所で紹介させていただいている通り、Datachemical LAB を...

線形モデルだからといって非線形モデルより外挿性が高いわけではまったくありません

よくある誤解の一つに、線形モデルは予測精度が低いけど外挿性が高い、非線形モデルは予測精度が高いけど外挿性が低い、というのがあります。回帰モデルが線形だからといって非線形モデルより予測精度が低いわけではありませんし、線形モデルだからといって非...

Datachemical LAB にどんな価値があるか

化学・化学工学分野におけるデータ解析・機械学習クラウドサービス「Datachemical LAB」の価値についてです。なお、無料トライアルを終えたほぼ全員が Datachemical LAB を即決していただき、そうでなくても、次の年度初め...

Dr. Iftikhar Ahmad を明治大学生田キャンパスにお招きして講演していただきました

2022年8月8日(月)に、パキスタンの National University of Sciences and Technology (NUST) で Associate Professor をされている Dr. Iftikhar Ahm...

Datachemical LABで解ける実践的な課題

Datachemical LAB をご利用いただき、皆様どうもありがとうございます。 分子設計・材料設計・プロセス設計におけるいろいろな問題・課題に対して、ご活用いただいているようで開発者としてとても嬉しい限りです。ご...

サンプルをグループごとにトレーニングデータとテストデータに分割する機能をDCEKitに搭載しました!

回帰モデルやクラス分類モデルの予測性能を評価するとき、トレーニングデータとテストデータにサンプルを分割して、トレーニングデータでモデルを構築し、テストデータで構築されたモデルを評価します。一般的には、scikit-learn の train...

Datachemical LAB の出現によるデータ解析・機械学習の変化

分子設計・材料設計・プロセス設計・プロセス管理において、データ解析・機械学習をすることが一般的になってきました。ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスという言葉も色々な場面で使われています。企業の...
タイトルとURLをコピーしました