プロセス制御・プロセス管理・ソフトセンサー

実験計画法・適応的実験計画法における特徴量選択とモデルの適用範囲

分子設計・材料設計・プロセス設計において、最初の実験・シミュレーションの合成条件・製造条件・プロセス条件などを実験計画法により決め、実験やシミュレーションをしたあとに得られるデータを用いて、特徴量 x と材料の物性・活性・特性 y との間で...

GridSearchCVでハイパーパラメータの最適化に失敗した時の原因と対処法

回帰モデルやクラス分類モデルにおけるハイパーパラメータを最適化するため、scikit-learn の GridSearchCV を使用する人がいらっしゃると思います。特に複数の種類のハイパーパラメータがあるとき、GridSearchCV を...

GTM や GTM Regression (GTMR) のハイパーパラメータの高速最適化

DCEKit に搭載されている Generative Topographic Mapping (GTM) や Generative Topographic Mapping Regression (GTMR) について、 ...

実験計画法における特徴量の標準化(オートスケーリング)

材料設計・プロセス設計において、合成条件・製造条件やプロセス条件などの特徴量 x と物性・活性・特性などの目的変数 y の間で数理モデル y = f(x) を構築し、構築したモデルを用いて y が目標値となるような x の値を探索します。モ...

線形手法を使うべきか、非線形手法を使うべきか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子や合成条件・製造条件・プロセス条件やプロセス変数などの特徴量 x と物性・活性・特性などの目的変数 y との間で数理モデル y = f(x) を構築したり、モデルに x の値...

適応型ソフトセンサーを転移学習&アンサンブル学習させて新たな銘柄を予測する手法を開発しました![金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルは Adaptive soft sensor based on transfer learning and e...

回帰分析手法やクラス分類手法のハイパーパラメータをベイズ最適化で高速に最適化する

DCEKit に搭載されている Gaussian Mixture Regression (GMR) や Variational Bayesian Gaussian Mixture Regression (VBGMR) について、 ...

特徴量(変数)が多いときもベイズ最適化でOK?分子記述子のときも?

分子設計・材料設計・プロセス設計において、ベイズ最適化により分子の化学構造や、材料の合成条件・製造条件や、プロセス条件などを最適化します。 ガウス過程回帰により、分子記述子・合成条件・製造条件・プロセス条件などの特徴量...

予測誤差は全部ノイズ!~ノイズを0にする方向で考えよう!~

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子や合成条件・製造条件・プロセス条件などの説明変数 x と物性・活性・特性などの目的変数 y の間で数理モデル y = f(x) を構築し、構築されたモデルを用いて x の値か...

二つの POL 講演会(ベイズ最適化・Datachemical LAB)を終えて

このたび、2021 年 12 月 21 日と 2022 年 5 月 13 日に、それぞれ POL 様が主催された講演会にて、お話させていただきました。 ① 2021 年 12 月 21 日 ベイズ最適化を駆使した研究・開発~モデル設計...
タイトルとURLをコピーしました