ケモメトリックス

特徴量が多いデータセットに対して、特徴量重要度を用いた機械学習モデルの解釈がしやすくなる方法を開発しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはInterpretation of machine learning models for datasets with many features using...

ベイズ最適化において、どの獲得関数を使えばよいのか?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

外挿を予測するための混合物の特徴量の計算手順

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

SELFIESに基づいた分子記述子、化学構造生成、inverse QSPR/QSARを開発しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはMolecular Descriptors, Structure Generation, and Inverse QSAR/QSPR Based on SEL...

目的変数yも特徴量エンジニアリング!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

Datachemical LABでデータに嘘をつかないデータ解析・機械学習を

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

同じ実験条件で何回か実験した結果があるときのデータ解析・機械学習

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

実践的な練習課題を Datachemical LAB で解き実践力をつける

Datachemical LAB の利用者が順調に増えております。いつもご活用をいただきありがとうございます。これまで Datachemical LAB の内容・機能のお話をいたしました。ケモインフォマティクス・マテリアルズインフォマティク...

金子はコンサルティングで何をしているのか?

大学教員として教育・研究をする中で、他の大学や企業の方と共同研究をすることがあります。同じ研究目的をもち、それぞれのグループで目的を達成するために研究したり、ディスカッションして前に進めたりしています。共同研究については、もちろんプロセスと...

Datachemical LAB のメニューが新しくなり、さらに使いやすくなりました!

Datachemical LAB をご検討いただきありがとうございます。順調にユーザーの数も増えており、多くの方にご利用いただき嬉しい限りです。ぜひ、材料設計・分子設計・プロセス設計・プロセス管理にご活用いただければと思います。Datach...
タイトルとURLをコピーしました