ケモメトリックス

データ解析・機械学習における、よくある誤解 4 選

共同研究やコンサルティングなどで、いろいろな方々とお話していると、データ解析・機械学習に関連した誤解があることに気づきます。確かに、一見妥当そうな内容ですので、誤解するのは仕方ないと思いますし、実際、中にはわたしも昔に同じことを考えており、...

目的変数の実測値vs.予測値プロットが横になってしまう(寝てしまう)ときは非線形手法を検討しよう

データセットを用いて、目的変数 Y と説明変数 X との間で回帰モデル Y = f(X) を構築し、そのモデルに X の値を入力することで Y の値を予測することがあります。その予測結果を、下の図のような Y の実測値 vs. 予測値のプロ...

回帰分析からクラス分類に変換したり、クラス分類から回帰分析に変換したりするメリット・デメリット

説明変数 X と目的変数 Y との間でモデル Y = f(X) を構築することがあります。Y が連続値の変数のときは回帰分析、Y がカテゴリー変数のときはクラス分類です。回帰分析、つまり Y が連続値の変数のとき、Y をカテゴリーの情報にす...

材料設計の限界(モデルの逆解析の限界)は分かるのか?

材料設計において、材料の物性 Y と実験条件 X との間で回帰モデル Y = f(X) を構築し、そのモデルに基づいて Y が望ましい値であったり、目標の値であったり、目標の範囲に入ったりするような X の値の提案を行います。いわゆるモデル...

ガウス過程による潜在変数モデル(Gaussian Process Latent Variable Model, GPLVM)で非線形性を考慮した潜在変数を計算しよう!

ガウス過程による教師なし学習である Gaussian Process Latent Variable Model (GPLVM) について、pdfとパワーポイントの資料を作成しました。infinite Warped Mixture Mode...

機能的なモノと意味があるモノ~MLR, SOMはオワコン?~

世の中には、機能的なモノばかりではなく、機能的ではないけれども意味があるモノもあります。例えば、ろうそくです。昔は、空間を明るくするために使われていましたが、今は電球や蛍光灯がありますので、空間を明るくすることに関しては機能的ではありません...

特徴量を抽象化して、モデルの逆解析により得られるサンプルの多様性を高める

目的変数 Y と説明変数 X の間で回帰モデルやクラス分類モデル Y = f(X) を構築して、Y がわからない X の値をモデルに入力することで、Y を予測することが行われています。予測精度の高いモデルを構築するためには 適切に X を設...

特徴量に関する基本的な考え方~複数の物質が混合されてできた物質~

ポリマー設計において、共重合体 (コポリマー) の特徴量を考えるとき、各モノマーを数値化した後に、それらのモノマーの組成比を重みとした重みつき平均 (加重算術平均もしくは単に加重平均) を計算することで数値化することがあります。また合金の特...

データの可視化をする理由

分子設計・材料設計・プロセス設計・ソフトセンサーなどにおいて、データ解析をするとき、目的としては Y の値を予測することや Y の値が目標を達成する X の値を設計することです。そのため主な解析手法は回帰分析手法やクラス分類手法になります。...

モデルの使い方~モデルの逆解析と目的変数の評価~

今回はデータ解析によって構築した回帰モデルやクラス分類モデルの使い方についてお話しします。使い道は大きく二つに分けられます。一つはモデルの逆解析、もう一つは目的変数 Y の評価です。 モデルの逆解析 モデルの逆解析では、Y の値が望ましい値...
タイトルとURLをコピーしました