データ解析

どのようなときに目的変数Yではなくlog(Y)にしたほうがよいのか?~対数変換するメリットとデメリット~

回帰分析では、目的変数 Y と説明変数 X との間でモデル Y = f(X) を構築します。このとき、Y ではなく、それを対数変換した log(Y) を用いることがあります。モデル log(Y) = f(X) を構築し、モデルに X を入力...

「DCE tool」に機能を追加しました!その2 逆解析のための予測用サンプルの生成・化学構造モード

「DCE tool」に機能を追加しましたので報告します!追加した機能は、 逆解析のための予測用サンプルの生成 化学構造モードです。順に説明します。なお新しい DCE tool はこちら↓からダウンロードをお願いします。DCE tool ダウ...

「DCE tool」に機能を追加しました!クロスバリデーション・カーネル関数・ベイズ最適化

「DCE tool」に機能を追加しましたので報告します!追加した機能は、 クロスバリデーションの fold 数の選択 カーネル関数のクロスバリデーションによる最適化 ベイズ最適化です。順に説明します。なお新しい DCE tool はこちら↓...

機械学習を手軽に試したい方へ、プログラミング不要で実行できるアプリ「DCE tool」を作りました。ご自由にお使いください

機械学習にチャレンジしてみたい、自分のもっているデータを使って機械学習してみたらどうなるか確認してみたい、という方はいらっしゃると思います。実際に機械学習をやってみて、よい結果が出ると、さらに機械学習をするモチベーションになるかもしれません...

変数選択・特徴量選択のときに注意すること

変数選択・特徴量選択の手法はいろいろあります。同じ値をもつサンプルの割合が大きい特徴量を削除したりとか、相関係数の絶対値が大きい特徴量の組の一つを削除したりとか、モデルの予測精度を高めるように特徴量を選択したりとか、乱数の特徴量のような目的...

良くない実験結果も、データ解析・機械学習するときは大事なデータです

分子設計や材料設計において、これまでの実験データを活用して、よりよい高機能性材料を達成するための化学構造や実験条件 (実験レシピ) を設計することを考えます。このウェブサイトにいろいろと書いてあるように、たとえば化合物のもつ物性や活性 Y ...

内挿・外挿は、モデルの適用範囲内・適用範囲外と違いますので注意が必要です

回帰分析やクラス分類によって構築された、目的変数 Y と説明変数 X との間のモデル Y = f(X) についてです。モデルについて議論するとき、モデルはデータの外挿は予測できない、内挿しか予測できない、とか、その予測結果は内挿なの?外挿な...

[法人向け] 機械学習・データ解析・化学構造の扱い・Pythonに関するハンズオンセミナー (体験学習) の動画

これまで、いろいろな企業やセミナーにおいて、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの講義や、Python のハンズオンセミナーを行って参りまして、そのような経験・実績をふまえて、以下の動画を作成い...

モデルの精度が低いときも、モデルの逆解析ってやるべき?

いろいろと共同研究やコンサルティングをしていますとやはり多いのは、モデルの逆解析です。新たな分子を設計したり、新たな材料を作るための実験レシピやプロセスを設計したり、装置を設計したりといった話です。モデルの逆解析をするためには、もちろんモデ...

ベイズ最適化において一度に複数の実験をするときに候補を選択するシンプルな方法

ベイズ最適化において、複数の実験候補を選択するお話です。ベイズ最適化についてはこちらをご覧ください。ベイズ最適化では、以下の 1. – 4. を繰り返すことで、物性や活性などの目的変数 Y が向上したり目標値を達成したりできる、実験条件など...
タイトルとURLをコピーしました