データ解析

データセットは生きもの。成長もしますし、それに応じて、モデルも成長します

データセットは生きている、と思いながら解析するようにしています。ただ、生物とは何か、、、という話にするつもりはなくてですね、データセットは、サンプルが増えたり減ったり、特徴量 (変数、記述子) が増えたり減ったり、成長しているなあという話で...

回帰分析手法・クラス分類手法の選び方

いつもどんな感じで回帰分析手法・クラス分類手法を選んでいるかお話します。予測結果の r2, RMSE, MAE, 正解率, ... といった指標だけ見て選んでいるわけではありません。 いろいろな回帰分析手法やクラス分類手法がありますね。 現...

金子研の研究、特に共同研究で難しいのは、データの収集の仕方・データの前処理・特徴量設計・モデルの逆解析・化学構造生成の5つです!

データ化学工学研究室 (金子研) では、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスに関する、いろいろな研究をしています。企業や大学・研究所との共同研究もしています。金子研の研究、特に共同研究をするとき...

「化学のためのPythonによるデータ解析・機械学習入門」 正誤表

Amazon をはじめとして、在庫の補充が遅れており申し訳ございません。発売 3 日後に重版がかかるなど、理工学書としてこれまでにない売れ行きだそうで、出版社もバタバタしているとのことです。もう少しお待ちいただけますと幸いです。 そんな中、...

[無料公開] 「化学のためのPythonによるデータ解析・機械学習入門」 の “はじめに” と目次の詳細

こちらの書籍には改訂2版がございます。改訂2版でも無料公開の部分の内容は変わらない一方で、一章分+α を改訂2版では追記しておりますので、以下で興味を持っていただけましたら、改訂2版の購入をオススメいたします。 2019 年 10 月 23...

カーネル関数って結局なんなの?→サンプル間の類似度と理解するのがよいと思います!

サポートベクターマシン (Support Vector Machine, SVM) や サポートベクター回帰 (Support Vector Regression, SVR) や ガウス過程回帰 (Gaussian Process Regr...

一般的なモデルの逆解析とベイズ最適化を使い分けるために、両者の特徴や違いを説明します

モデルの逆解析 (Inverse Analysis) について、 ベイズ最適化 (Bayesian Optimization, BO) と一緒にお話しいたします。 データセットがあるとき、いろいろな回帰手法を検討して、推定精度の最も高い回帰...

人を成長させる人工知能

以前に、人工知能が本質的に何をしているかを書きました。 人工知能をつくったら、それを使わない手はありません。うまく使うことで、人工知能によって人が成長できるようになります。 たとえば高機能性材料を開発しているとき、実験条件 x を決めて、実...

[デモのプログラムあり] ガウス過程回帰(Gaussian Process Regression, GPR)におけるカーネル関数を11個の中から最適化する (scikit-learn)

こちらのガウス過程による回帰 (Gaussian Process Regression, GPR) において、カーネル関数をどうするか、というお話です。 そもそも GPR のカーネル関数はサポートベクター回帰 (Support Vector...

[デモのプログラムあり] Local Outlier Factor (LOF) によるデータ密度の推定・外れサンプル(外れ値)の検出・異常検出

Local Outlier Factor (LOF) について、パワーポイントの資料とその pdf ファイルを作成しました。LOF は k-nearest neighbor algorithm (k-NN) の発展版のようなもので、データ密...
タイトルとURLをコピーしました