プロセス制御・プロセス管理・ソフトセンサー

藤井幹也 氏を明治大学生田キャンパスにお招きして講演していただきました

2023年11月9日(木)に、奈良先端科学技術大学院大学 (NAIST) の先端科学技術研究科物質創成科学領域で教授をされている 藤井幹也 氏を明治大学生田キャンパスにお招きしまして、実験・第一原理計算・機械学習・ロボティックスの融合による...

2nd International Conference on Polymer Science and Engineering @ San Franciscoに学生たちといってきました!

2023 年 11 月 1 日から 3 日までアメリカ合衆国のサンフランシスコで開催されていた 2nd International Conference on Polymer Science and Engineering に修士2年の学生...

気体分離膜材料とそれらを用いた分離プロセスを機械学習により同時に設計しました![金子研論文]

金子研の論文が Industrial & Engineering Chemistry Research に掲載されましたので、ご紹介します。タイトルはSimultaneous Design of Gas Separation Membran...

機械学習モデルを大域的・局所的に解釈する方法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

機械学習(回帰分析・クラス分類)をする全ての人が、最初に頭に入れるべきこと

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

手動・自動の特徴量エンジニアリングの考え方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

目的変数yとの相関では説明変数xを選択しません!選択するときは多変量解析で!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

説明変数の上限・下限はデータ解析・機械学習では決まりません!決めるときは実験系・シミュレーション系で!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

機械学習モデルの逆解析の評価は、実験(もしくはそれに代わるシミュレーション)でしかできません

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」 正誤表

タイトルの書籍をすでにお読みいただいた方々から、ご質問やご指摘をいただいております。感謝申し上げます。そこでいただいたご指摘から、間違えがあることもわかりましたので、正誤リストとして以下にまとめます。申し訳ございませんが、よろしくお願いいた...
タイトルとURLをコピーしました