プロセス制御・プロセス管理・ソフトセンサー

Datachemical LABでクラス分類のモデル最適化と予測ができるようになりました

いつも Datachemical LAB をご利用いただきありがとうございます。これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・回帰分析・モデルの逆解析・モデルの適用範...

モデルの解釈の結果とドメイン知識(化学的背景・物理的背景等)とが合わないときはどうするか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

ロジスティック回帰(Logistic Regression)~名前は回帰だけど目的はクラス分類~

ロジスティック回帰 (Logistic Regression, LR) について、pdf とパワーポイントの資料を作成しました。LR の計算方法について説明されています。pdfもスライドも自由にご利用ください。pdfファイルはこちらから、パ...

合成条件から材料の物性・活性や製品品質まで複数のモデルで繋ぐ

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

特徴量が多いときに特徴量重要度・変数重要度でモデルを解釈する方針

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

テストデータクロスバリデーションにおける決定係数や正解率が小さいときの変数重要度・特徴量重要度の考え方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

yが0や1(100)の値をもつデータセットの扱い方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

モデル構築するときに特徴量xの重みを考慮できるか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

モデルの予測精度を上げるのではなく、本来の予測精度を目指すという考え方

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

適応的実験計画法を進めるときに、モデル構築手法やカーネル関数や特徴量セットはどうするか?

分子設計・材料設計・プロセス設計において、分子記述子・合成条件・製造条件・評価条件・実験条件・プロセス条件などの特徴量 x と分子・材料・製品の物性・活性・特性などの目的変数 y との間で、データセットを用いて数理モデル y = f(x) ...
タイトルとURLをコピーしました