化学工学

化学工学会第55回秋季大会で研究発表をしてきました!

2024年9月11日から13日まで北海道大学 札幌キャンパスで開催された化学工学会第55回秋季大会で研究発表をしてまいりました。システム・情報・シミュレーション (SIS) 部会のシンポジウムおいて4件の口頭発表と、材料・界面部会や反応工学...

異常検出(異常検知)モデルの性能はどのように評価するのか?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」 正誤表

タイトルの書籍をすでにお読みいただいた方々から、ご質問やご指摘をいただいております。感謝申し上げます。そこでいただいたご指摘から、間違えがあることもわかりましたので、正誤リストとして以下にまとめます。申し訳ございませんが、よろしくお願いいた...

モデルの逆解析のための仮想的な時系列データを自動生成する手法を開発しました![金子研論文]

金子研の論文が Case Studies in Chemical and Environmental Engineering に掲載されましたので、ご紹介します。タイトルはT-Gen: Time series data generator ...

[無料公開] 「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」の“改訂版の発行にあたって”、詳細な目次、第8章の一部

2023 年 8 月 30 日に、金子弘昌著の「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」が出版されました。オーム社: Amazon: こちらは、以前に出版した書籍 「化学のための Pythonによるデータ解析・機...

ジメチルエーテル製造プロセスをベイズ最適化で頑健に設計すること(ロバストベイズ最適化)に成功しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはRobust Design of a Dimethyl Ether Production Process Using Process Simulation a...

実践的な練習課題を Datachemical LAB で解き実践力をつける

Datachemical LAB の利用者が順調に増えております。いつもご活用をいただきありがとうございます。これまで Datachemical LAB の内容・機能のお話をいたしました。ケモインフォマティクス・マテリアルズインフォマティク...

Datachemical LABで混合物の特徴量化ができるようになりました

いつも Datachemical LAB をご利用いただきありがとうございます。これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・回帰分析・モデルの逆解析・モデルの適用範...

Datachemical LAB は他のソフトウェアと何が違うのか?~9つの大きなポイント~

いつも Datachemical LAB をご利用いただきありがとうございます。Datachemical LAB の利用を検討するとき、他のデータ解析・機械学習のソフトウェアと何が違うのか、気になる方もいらっしゃると思います。Datache...

機械学習によりバッチプロセスの特徴量化および直接的逆解析を行う手法を開発しました![金子研論文]

金子研の論文が Case Studies in Chemical and Environmental Engineering に掲載されましたので、ご紹介します。タイトルはDesign of batch process with machi...
タイトルとURLをコピーしました