Datachemical LABでスペクトルの変換ができるようになりました

いつも Datachemical LAB をご利用いただきありがとうございます。これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・特徴量計算・回帰分析・モデルの逆解析・モ...

藤井幹也 氏を明治大学生田キャンパスにお招きして講演していただきました

2023年11月9日(木)に、奈良先端科学技術大学院大学 (NAIST) の先端科学技術研究科物質創成科学領域で教授をされている 藤井幹也 氏を明治大学生田キャンパスにお招きしまして、実験・第一原理計算・機械学習・ロボティックスの融合による...

2nd International Conference on Polymer Science and Engineering @ San Franciscoに学生たちといってきました!

2023 年 11 月 1 日から 3 日までアメリカ合衆国のサンフランシスコで開催されていた 2nd International Conference on Polymer Science and Engineering に修士2年の学生...

気体分離膜材料とそれらを用いた分離プロセスを機械学習により同時に設計しました![金子研論文]

金子研の論文が Industrial & Engineering Chemistry Research に掲載されましたので、ご紹介します。タイトルはSimultaneous Design of Gas Separation Membran...

機械学習モデルを大域的・局所的に解釈する方法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

渡辺豪 氏を明治大学生田キャンパスにお招きして講演していただきました

2023年10月23日(月)に、北里大学未来工学部データサイエンス学科 (2023年4月誕生!) で教授をされている 渡辺豪 氏を明治大学生田キャンパスにお招きしまして、ソフトマターのミクロな世界に関するご講演をしていただきました。渡辺先生...

論文から収集したデータセットに基づいて機械学習によりアンモニアボラン脱水素触媒を設計しました![金子研論文]

金子研の論文が Industrial & Engineering Chemistry Research に掲載されましたので、ご紹介します。タイトルはDesign of Ammonia Borane Dehydrogenation Cata...

機械学習(回帰分析・クラス分類)をする全ての人が、最初に頭に入れるべきこと

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

自分の希少性を上げて時給を上げよう!

いつも学生には希少価値の高い人、レアな人になるといいよ、という話をしています。なお考え方やデータは以下の本を参考にしています。 藤原和博, 藤原和博の必ず食える1%の人になる方法, 東洋経済新報社, 2013 藤原和博, 藤原先生、これから...

モデリングを工夫することで、すべてのデータを活用しよう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました