データセットに合わせて主成分分析PCAを有効に活用する

回帰モデルやクラス分類モデルを構築するとき、データセットの前処理や特徴量の低次元化を目的として、主成分分析 (Principal Component Analysis, PCA) を行うことがあります。 可視化・低次元...

特徴量選択・変数選択をするときのハイパーパラメータの決め方や考え方

分子設計・材料設計・プロセス設計・プロセス制御において、分子記述子・合成条件や製造条件・プロセス条件・プロセス変数などの特徴量 x と材料の物性・活性・特性や製品の品質など目的変数 y との間で数理モデルを構築します。y の関係のない x ...

モデルの適用範囲の広さを評価する方法

分子設計・材料設計・プロセス設計・プロセス制御において、分子記述士・合成条件や製造条件・プロセス条件・プロセス変数などの特徴量 x と材料の物性・活性・特性や製品品質などの目的変数 y との間で、数理モデル y = f(x) を構築します。...

公開動画

これまでデータ化学工学研究室 (金子研究室) 関係で公開されている動画をまとめます。公開動画が追加され次第、新しい順に追加していきます。 ・2022 年 5 月 20 日 第25回ケムステVシンポジウム「データサイエンスが導...

実験計画法・適応的実験計画法における特徴量選択とモデルの適用範囲

分子設計・材料設計・プロセス設計において、最初の実験・シミュレーションの合成条件・製造条件・プロセス条件などを実験計画法により決め、実験やシミュレーションをしたあとに得られるデータを用いて、特徴量 x と材料の物性・活性・特性 y との間で...

ホモポリマーとコポリマーを同時に設計する高分子設計手法を開発しました![金子研論文]

金子研の論文が Polymer Engineering & Science に掲載されましたので、ご紹介します。タイトルは Molecular design of monomers by considering the...

GridSearchCVでハイパーパラメータの最適化に失敗した時の原因と対処法

回帰モデルやクラス分類モデルにおけるハイパーパラメータを最適化するため、scikit-learn の GridSearchCV を使用する人がいらっしゃると思います。特に複数の種類のハイパーパラメータがあるとき、GridSearchCV を...

GTM や GTM Regression (GTMR) のハイパーパラメータの高速最適化

DCEKit に搭載されている Generative Topographic Mapping (GTM) や Generative Topographic Mapping Regression (GTMR) について、 ...

実験計画法における特徴量の標準化(オートスケーリング)

材料設計・プロセス設計において、合成条件・製造条件やプロセス条件などの特徴量 x と物性・活性・特性などの目的変数 y の間で数理モデル y = f(x) を構築し、構築したモデルを用いて y が目標値となるような x の値を探索します。モ...

線形手法を使うべきか、非線形手法を使うべきか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子や合成条件・製造条件・プロセス条件やプロセス変数などの特徴量 x と物性・活性・特性などの目的変数 y との間で数理モデル y = f(x) を構築したり、モデルに x の値...
タイトルとURLをコピーしました