サポートベクター回帰(Support Vector Regression, SVR)~サンプル数10000以下ならこれを使うべし!~

サポートベクター回帰(Support Vector Regression, SVR)について、pdfとパワーポイントの資料を作成しました。データセットが与えられたときに、SVRで何ができるか、SVRの特徴、どのように計算するかが説明されてい...

リッジ回帰(Ridge Regression, RR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN)~誤差の二乗和と一緒に回帰係数の値も小さくする~

リッジ回帰(Ridge Regression, RR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN) について、pdfとパワーポイントの...

実験計画法の概要~データを上手く使って実験のコスパを上げましょう!~

たとえば、化学反応 A + B → C + D の、 C の収率を上げることを考えます。収率がもっとも高くなる実験条件を見つけることが目標です。 実験条件の1つである反応温度を 25℃ にして実験してみましょう。人間は精密機械ではありません...

研究室の5つの意義・価値~失敗しない研究室選び~

明治大学の応用化学科では、3年生の12月ころに学生たちが配属になる研究室を選ぶことになります。 研究室選択のときに確認したほうがよいこととして、学生にとっての研究室の5つの意義・価値をまとめました。 興味のある分野の研究ができる 研究室にあ...

サポートベクターマシン(Support Vector Machine, SVM)~優秀な(非線形)判別関数~

サポートベクターマシン(Support Vector Machine, SVM)について、pdfとパワーポイントの資料を作成しました。データセットが与えられたときに、SVMで何ができるか、どのようにSVMを計算するかが説明されています。pd...

線形判別分析(Linear Discriminant Analysis, LDA)~多クラスにも応用できる線形クラス分類~

線形判別分析(Linear Discriminant Analysis, LDA)について、pdfとパワーポイントの資料を作成しました。データセットが与えられたときに、LDAで何ができるか、どのようにLDAを計算するかが説明されています。p...

部分的最小二乗回帰(Partial Least Squares Regression, PLS)~回帰分析は最初にこれ!~

部分的最小二乗回帰 (Partial Least Squares Regression, PLS) について、pdfとパワーポイントの資料を作成しました。データセットが与えられたときに、PLSで何ができるか、どのようにPLSを計算するかが説...

主成分分析(Principal Component Analysis, PCA)~データセットの見える化・可視化といったらまずはこれ!~

主成分分析(Principal Component Analysis, PCA)について、pdfとパワーポイントの資料を作成しました。データセットが与えられたときに、PCAで何ができるか、どのようにPCAを計算するかが説明されています。pd...

モデルを作るのにサンプル数はいくつ必要か?に対する回答~モデルの適用範囲・モデルの適用領域~

統計だったり機械学習だったりニューラルネットワークだったり、データを使ったモデルの開発をしていますと、 いくつサンプルがあったらモデルはできますか? ってよく聞かれます。今回はこの質問に答えながら、モデルの適用範囲・モデルの適用領域について...

初めてのベトナム International Symposium on Pure & Applied Chemistry (ISPAC) 2017@Ho Chi Minh City

2017年6月8日から10日までベトナムのホーチミン・シティで開催されたISPAC2017において、招待講演をさせていただいてきました。招待していただいた北海道大学の高橋先生・広島大学の石元先生に感謝です。 基本的に4つの部屋でいくつかのセ...
タイトルとURLをコピーしました