ケモメトリックス

どうしてGMRやGTMRといったモデルの直接的逆解析法は良好な結果を生み出すのか?

回帰モデルを直接的に逆解析ができる、すなわち説明変数 X から目的変数 Y (Y が複数でもOK!) を直接的に推定できる手法である Gaussian Mixture Regression (GMR) や Generative Topogr...

説明変数の重要度を考慮した新たな非線形サポートベクター回帰(SVR)を開発しました![金子研論文]

金子研の論文が Journal of Chemometrics に掲載されましたので、ご紹介します。タイトルはSupport vector regression that takes into consideration the impor...

材料の結晶構造を考慮して熱電変換材料を設計しました![金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルはDesign of thermoelectric materials with high electrical condu...

「エンジニアのための実践データ解析」 データ解析をすぐに実践したい方が読む本

藤井宏行, 「エンジニアのための実践データ解析」, 東京化学同人, 2005東京化学同人: Amazon: もともとは化学工学会の学会誌に連載されていた “ケミカルエンジニアのための統計的品質管理入門” の内容を加筆修正された本です。学生の...

ベイズ最適化で複数の目的変数がある場合の対応[Probability of Improvement(PI)以外]

適応的実験計画法により、高機能性材料を達成するための実験条件・製造条件を探索したり、高性能プロセスを開発するためのプロセス条件を探索したりするとき、ベイズ最適化を用いることで効率的に外挿を探索しながら目標達成を目指すことができます。設計問題...

回帰係数=寄与度とすることは危険、どうしても寄与度を求めたいときはPCRやPLSの1成分モデルで、ただ基本的には寄与度ではなく重要度で議論

タイトルで言いたいことはほとんど言っていますが、丁寧に説明します。たとえば最小二乗法による線形重回帰分析や部分的最小二乗回帰 (Partial Least Squares Regression, PLS) や Least Absolute ...

データセット作成のときに注意する6つのこと

データ解析・機械学習を行うためには、データセットが必須です。エクセルファイルや実験ノートなどからデータを集めて、整理してまとめると思います。そのようにしてデータセットを作成するとき、注意することがあります。6つそれぞれ説明します。1. xl...

モデルを運用することを想定して、モデルの設計をしましょう!

説明変数 X と目的変数 Y の間でモデル Y = f(X) を構築するとき、やはり今あるデータで構築できる最適なモデルを構築したいと思います。そのためモデルを設計します。新たな X を提案・作成したり、X の組み合わせを選んだり、回帰分析...

意識と無意識、形式知と暗黙知、言語と非言語~データ解析・機械学習におけるヒヨコのオスメスを見分け方をすべて言語化できるか?~

データ解析や機械学習の相談を受けるとき、背景やデータの内容を聞くだけで、上手くいきそうとか、上手くいかなさそうとか、感覚的にわかることがあります。実際にデータを見るとその確度が高まりますが、データを見なくても、ある程度わかったりします。たと...

X と Y が一貫した関係をもつようなデータセットの作り方

説明変数 X と目的変数 Y の間で回帰モデル Y = f(X) を構築するとき、X と Y の間の関係は一貫している必要があります。下の図をご覧ください。上の (a) の図では、X と Y の間の関係は一貫していません。X の値が p の...
タイトルとURLをコピーしました