研究室

特徴量に関する基本的な考え方~複数の物質が混合されてできた物質~

ポリマー設計において、共重合体 (コポリマー) の特徴量を考えるとき、各モノマーを数値化した後に、それらのモノマーの組成比を重みとした重みつき平均 (加重算術平均もしくは単に加重平均) を計算することで数値化することがあります。また合金の特...

データの可視化をする理由

分子設計・材料設計・プロセス設計・ソフトセンサーなどにおいて、データ解析をするとき、目的としては Y の値を予測することや Y の値が目標を達成する X の値を設計することです。そのため主な解析手法は回帰分析手法やクラス分類手法になります。...

モデルの使い方~モデルの逆解析と目的変数の評価~

今回はデータ解析によって構築した回帰モデルやクラス分類モデルの使い方についてお話しします。使い道は大きく二つに分けられます。一つはモデルの逆解析、もう一つは目的変数 Y の評価です。モデルの逆解析モデルの逆解析では、Y の値が望ましい値にな...

異常検出を気軽に試したい方へ、プログラミング不要で実行できるアプリ「DCE fault detection」を作りました。ご自由にお使いください。ちなみにモデルの適用範囲(AD)の設定にも使えます

異常検出を試してみたい、プラントのデータを使って異常なのか正常なのか推定してみたら、どれくらいの異常を推定できるのか確認してみたい、という方はいらっしゃると思います。試してみて良い結果が出ると、さらに異常検出について勉強するモチベーションも...

ガウシアンカーネルを用いた SVR ではモデルの適用範囲を考慮しなくてよいの?!

目的変数 Y と説明変数 X との間で回帰モデル Y = f(X) を構築するとき、基本的にモデルの適用範囲 (Applicability Domain, AD) を設定する必要があります。AD の詳細はこちらをご覧ください。回帰分析手法で...

データ解析・機械学習のプログラミングでエラーが出たら、まずはデータセットの中身を確認しましょう

分子設計、材料設計、プロセス設計、プロセス管理・制御において、データセットを用いて解析したり、機械学習したりします。データセットの可視化をしたり、クラスタリングをしたり、クラス分類をしたり、回帰分析をしたり、予測をしたり、予測結果に基づいて...

データ解析前における、説明変数(特徴量・記述子)の決め方・選び方の方針

目的変数 Y と説明変数 (特徴量・記述子) X との間に、クラス分類や回帰分析によってモデル Y = f(X) を構築します。モデルを構築するためにはデータセットが必要ですので、Y, X を決めてからサンプルを集めなければなりません。モデ...

みなさまの共同研究のおかげさまで、金子研の学生たちが成長できます。どうもありがとうございます

データ化学工学研究室 (金子研) の修士の学生は全員、研究室内でアルバイトをしています。そしてその財源の一部は企業との共同研究です。共同研究させていただいている皆さまにお礼申し上げます。学生は研究室内バイト以外にも、応用化学専攻内でティーチ...

変数選択・特徴量選択のときの意識は、モデルの予測精度を上げることより、不要な変数・特徴量を削除することです

回帰モデルやクラス分類モデルの予測精度を上げるためモデルを解釈するため色々な目的で変数選択 (特徴量選択) をしていると思います。相関係数に基づく削除、Stepwise法、LASSO、GAPLS, GASVR、Boruta とかですね。変数...

目的変数の値が0から1の間のとき、予測値も0から1の間にしたい!→ロジット変換はどうでしょう?

今回は、目的変数 Y の値が 0 から 1 の間にあり、回帰分析をするときの話です。例えば Y がモル分率などのときですね。このような Y と説明変数 X の間で回帰モデル Y=f(X) を構築して、X の値から Y の値を予測したとき、予...
タイトルとURLをコピーしました