材料の結晶構造を考慮して熱電変換材料を設計しました![金子研論文] 金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルは Design of thermoelectric materials with high electrical cond... 2020.12.06 ケモインフォマティクスケモメトリックスデータ解析研究室論文
「エンジニアのための実践データ解析」 データ解析をすぐに実践したい方が読む本 藤井宏行, 「エンジニアのための実践データ解析」, 東京化学同人, 2005 東京化学同人: Amazon: もともとは化学工学会の学会誌に連載されていた “ケミカルエンジニアのための統計的品質管理入門” の内容を加筆修正された本です。学生... 2020.11.29 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
ベイズ最適化で複数の目的変数がある場合の対応[Probability of Improvement(PI)以外] 適応的実験計画法により、高機能性材料を達成するための実験条件・製造条件を探索したり、高性能プロセスを開発するためのプロセス条件を探索したりするとき、ベイズ最適化を用いることで効率的に外挿を探索しながら目標達成を目指すことができます。設計問題... 2020.11.29 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
回帰係数=寄与度とすることは危険、どうしても寄与度を求めたいときはPCRやPLSの1成分モデルで、ただ基本的には寄与度ではなく重要度で議論 タイトルで言いたいことはほとんど言っていますが、丁寧に説明します。たとえば最小二乗法による線形重回帰分析や部分的最小二乗回帰 (Partial Least Squares Regression, PLS) や Least Absolute ... 2020.11.22 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー
データセット作成のときに注意する6つのこと データ解析・機械学習を行うためには、データセットが必須です。エクセルファイルや実験ノートなどからデータを集めて、整理してまとめると思います。そのようにしてデータセットを作成するとき、注意することがあります。6つそれぞれ説明します。 1. x... 2020.11.15 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
モデルを運用することを想定して、モデルの設計をしましょう! 説明変数 X と目的変数 Y の間でモデル Y = f(X) を構築するとき、やはり今あるデータで構築できる最適なモデルを構築したいと思います。そのためモデルを設計します。新たな X を提案・作成したり、X の組み合わせを選んだり、回帰分析... 2020.10.25 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
意識と無意識、形式知と暗黙知、言語と非言語~データ解析・機械学習におけるヒヨコのオスメスを見分け方をすべて言語化できるか?~ データ解析や機械学習の相談を受けるとき、背景やデータの内容を聞くだけで、上手くいきそうとか、上手くいかなさそうとか、感覚的にわかることがあります。実際にデータを見るとその確度が高まりますが、データを見なくても、ある程度わかったりします。 た... 2020.10.18 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
X と Y が一貫した関係をもつようなデータセットの作り方 説明変数 X と目的変数 Y の間で回帰モデル Y = f(X) を構築するとき、X と Y の間の関係は一貫している必要があります。下の図をご覧ください。 上の (a) の図では、X と Y の間の関係は一貫していません。X の値が p ... 2020.10.04 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
目的変数が複数あるときの、Gaussian Mixture Regression による直接的なモデルの逆解析、材料設計![金子研論文] 金子研の論文が Materials & Design に掲載されましたので、ご紹介します。タイトルは Direct inverse analysis based on Gaussian mixture regression for mult... 2020.09.27 ケモインフォマティクスケモメトリックスデータ解析研究室論文
モデルの予測精度を上げるための考え方・方針 目的変数 Y と説明変数 X との間で、回帰分析やクラス分類を行い、モデル Y = f(X) を構築します。もちろん予測精度の高いモデルが望ましいですので、モデルの予測精度を上げるために、いろいろと工夫をします。その工夫の方針は、以下の 5... 2020.09.13 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室