設計の目的は問題解決 設計の目的は設計することではなくて、何かしらの問題を解決することです。あたりまえのことかもしれませんが、少しお話しします。 いろいろな設計問題があります。分子・化学構造を設計したり、材料の作り方 (実験条件・製造条件) を設計したり、プロセ... 2019.08.25 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
DCEKit (Data Chemical Engineering toolKit) のクラスや関数の解説 (取扱説明書) こちらのDCEKit (Data Chemical Engineering toolKit) について、 クラスや関数の解説をします。少し長いですが、「Ctrl + F」で知りたいクラス・関数の名前を検索してもらえるとうれしいです。黄色のマ... 2019.08.23 ケモインフォマティクスケモメトリックスデータ解析プログラミングプロセス制御・プロセス管理・ソフトセンサー研究室
DCEKit (Data Chemical Engineering toolKit) を PyPI にリリース! これまで化学データ・化学工学データのデータ解析に役立つツールや金子研で開発された手法に関する Python コードを Github にて公開してきました。このたびは、これらのツール・手法 (の一部) に加えて、新たな機能を追加して、DCEK... 2019.08.18 ケモインフォマティクスケモメトリックスデータ解析プログラミングプロセス制御・プロセス管理・ソフトセンサー研究室
[Pythonコード付き] テストデータのMAEをトレーニングデータから推定する方法を開発したので紹介します [金子研論文] 回帰分析において、新しいサンプルを推定するときの誤差の絶対値の平均値を推定するための指標を開発しました。イメージとしては、テストデータとしてサンプルがたくさんあるときの、モデルの適用範囲 (Applicability Domain, AD)... 2019.08.11 ケモインフォマティクスケモメトリックスデータ解析プログラミングプロセス制御・プロセス管理・ソフトセンサー研究室
クロスバリデーション(交差検定)のとき、変数の標準化(オートスケーリング)はどうするか? 金子研オンラインサロンにおいて、 メンバーの方からクロスバリデーションのとき変数の標準化 (オートスケーリング) に関して質問がありました。とても大事な視点であり、一言では回答できない内容でしたので、ブログで取り上げさせていただきました。 ... 2019.08.11 ケモインフォマティクスケモメトリックスデータ解析プログラミングプロセス制御・プロセス管理・ソフトセンサー研究室
プログラミング未経験者のためのデータ解析・機械学習、連載スタート! 化学工学会の会誌で、Python でデータ解析・機械学習をおこなうための連載が始まりました。 〔連載〕プログラミング未経験者のためのデータ解析・機械学習 が化学工学会の会誌でスタートしました! 1. 本連載のねらい・Jupyter Note... 2019.08.04 ケモインフォマティクスケモメトリックスデータ解析プログラミング化学工学研究室
モデルの逆解析をするときのチェックリスト 回帰モデルやクラス分類モデルを構築したら、モデルの逆解析を行うことで、目的変数の目標値を達成すると考えられる説明変数の値を推定できます。ただ、モデルの逆解析をするときは、いくつか注意点がありますので、チェックリストとしてまとめました。モデル... 2019.07.28 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
[解析結果とPythonコードあり] 転移学習 (Transfer Learning) を用いたデータ解析 転移学習 (Transfer Learning) について、パワーポイントの資料とその pdf ファイルを作成しました。どんなシチュエーションで転移学習が使えるのか、そして転移学習により本当にモデルの精度は向上するのか、数値シミュレーション... 2019.07.28 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
すでに100万サンプル超え!?金子研ではこれまでどのようなデータセットを扱ってきたのか これまで金子研では、学生たちやわたしが、いろいろな種類のデータセットを扱ってまいりました。参考までに、これまでのデータセットを、教師ありのサンプル数 (目的変数の値のあるサンプル数) と一緒にまとめました。共同研究に関するものなど、ぼやかし... 2019.07.21 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
[Pythonコードあり] GTMR(Generative Topographic Mapping Regression)でデータの可視化・回帰分析・モデルの適用範囲・モデルの逆解析・化学構造生成をいっぺんにやってしまいます! (物性・活性が2つ以上でもOK) またまた Structure Generator based on R-Group (SGRG) という化学構造を生成する Python プログラムへの、新たな機能追加です。 前回はベイズ最適化 (Bayesian Optimization... 2019.07.14 ケモインフォマティクスケモメトリックスデータ解析プログラミング研究室