データ解析

スパースな(疎な)実験データセットを解析するときの一工夫

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

サンプルが少なくてもまずはデータ解析・機械学習してみよう!

データ解析・機械学習関係のよくある質問の中に、何サンプル集めればデータ解析・機械学習で分子設計・材料設計・プロセス設計ができますか?、といったものがあります。また、具体的に何サンプルしかないのですがこれでできますか、といった心配をされる方も...

GAPLSやGASVRだけでなくGA+回帰分析手法で変数選択・特徴量選択

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

ドメイン知識を活用して最初の実験条件やシミュレーション条件の候補を決める

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

Datachemical LABで混合物の特徴量化ができるようになりました

いつも Datachemical LAB をご利用いただきありがとうございます。これまでご紹介させていただいた通り、Datachemical LAB を使用することで、データの前処理・データの可視化・回帰分析・モデルの逆解析・モデルの適用範...

ベイズ最適化でばらつきのある複数のサンプルを選択する

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

逆解析の結果で目的変数の予測値が大きく(小さく)ならないときに確認すること

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

外れサンプルは1つずつ検討しよう!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

機械学習によりバイオマテリアルの材料特性と骨形成率を予測するモデルを構築し、直接的逆解析により新規材料の設計をしました! [相澤研&金子研の共同研究論文]

相澤研と金子研における共同研究の成果の論文が Industrial & Engineering Chemistry Research に掲載されましたので、ご紹介します。タイトルはMachine Learning Model for Pre...

高分子化合物を対象とした合成反応予測モデル(構造生成)&逆合成反応予測モデルを開発しました![金子研論文]

金子研の論文が Macromolecular Theory and Simulations に掲載されましたので、ご紹介します。タイトルはRetrosynthetic and Synthetic Reaction Prediction Mo...
タイトルとURLをコピーしました