データ解析

決定木やランダムフォレストを回帰分析でどのように活用するか?

今回は決定木やランダムフォレストの活用方法についてです。というのも、決定木やランダムフォレストをクラス分類に用いるときは特に関係ないのですが、回帰分析に用いるときは、決定木やランダムフォレストによって構築されたモデルの特徴の一つに、目的変数...

モデルの適用範囲を広げるにはどうすればよいのか?

分子設計・材料設計・プロセス設計を行うとき、分子記述子や材料の合成条件・製造条件やプロセス条件などの特徴量 x と物性・活性・特性など y との間で、データを用いて数理モデル y = f(x) を構築します。そして、そのモデルを用いて x ...

今あるデータセットに対して、どの手法を使えばよいのか?

説明変数 x と目的変数 y の間で回帰モデル・クラス分類モデル y = f(x) を構築して、構築されたモデルを用いて x の値から y を予測したり、逆に y の値が目標値になるように x の値を設計したりします。このような数理モデルが...

プロセスの動特性を考慮した異常検出と異常診断を達成するディープニューラルネットワークを開発しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはDeep Convolutional Neural Network with Deconvolution and a Deep Autoencoder for...

Gaussian Mixture Regression の真の順解析・逆解析をする手法を開発しました![金子研論文]

金子研の論文が Science and Technology of Advanced Materials: Methods に掲載されましたので、ご紹介します。タイトルはTrue Gaussian Mixture Regression an...

有機過酸化物の自己促進分解温度を予測するモデルを開発しました![金子研論文]

金子研の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはDevelopment of Prediction Models for the Self-Accelerating Decomposition Temper...

モデル構築のときに特徴量の重要度を考慮した方がよいか

説明変数 x と目的変数 y の間で回帰モデルやクラス分類モデルを構築するとき、いろいろな回帰分析手法やクラス分類手法があります。x のすべての特徴量が平等に重要な場合もあれば、x の中に重要な特徴量もあり重要でないノイズのような特徴量もあ...

材料開発の限界を検討するための機械学習からの情報

分子設計・材料設計・プロセス設計において、分子や合成条件・製造条件やプロセス条件の特徴量 x と材料の物性や活性 y との間で機械学習により数理モデル y = f(x) を構築し、モデルを用いて次の分子や合成条件・製造条件やプロセス条件を設...

遺伝的アルゴリズムの実行結果は変化しやすく、またオーバーフィットしやすい、その対処法とは?

遺伝的アルゴリズム (Genetic Algorithm, GA) などの最適化アルゴリズムを駆使して、何らかの問題における最適解を探索することが行われます。例えば変数選択もしくは特徴量選択において GA を用いるときには、GA の染色体で...

金属有機構造体のモデル化に成功しました![金子研論文]

金子研の論文が Journal of Chemical Information and Modeling に掲載されましたので、ご紹介します。タイトルはCorrelation between the Metal and Organic Co...
タイトルとURLをコピーしました