データ解析

「統計学入門 (基礎統計学Ⅰ)」 統計学について学びたい方へ

東京大学教養学部統計学教室 編, 「統計学入門 (基礎統計学Ⅰ)」, 東京大学出版会, 1991東京大学出版会: Amazon: 統計学の入門書です。データ解析や機械学習をやる上で、必要な統計学の内容を学べます。他にもいろいろと統計学の本を...

オーバーフィッティング(過学習)の本質を理解して実用的な議論をする

回帰分析やクラス分類を行うとき、オーバーフィッティング(過学習)をしないことが重要といわれます。オーバーフィッティングを防ぐため、クロスバリデーションでハイパーパラメータを決めたり、テストデータを用いて回帰分析手法やクラス分類手法を選んだり...

「実践GAN 敵対的生成ネットワークによる深層学習」 敵対的生成ネットワーク(Generative Adversarial Network, GAN)について学びたい方へ

Jakub Langr 著, Vladimir Bok 著, 大和田茂 訳, 「実践GAN 敵対的生成ネットワークによる深層学習」, マイナビ出版, 2020マイナビ出版: Amazon: 敵対的生成ネットワーク (Generative A...

「ガウス過程と機械学習」 ガウス過程法についてゼロから学びたい方へ

持橋大地, 大羽成征, 「ガウス過程と機械学習」, 講談社, 2019講談社: Amazon: ガウス過程、ガウス過程回帰、機械学習について学ぶための本です。最初から読み進めることで、ガウス過程のイメージをもてるようになり、そして線形回帰モ...

モデルの直接的逆解析法で効率的な適応的実験計画法ができるようになりました![金子研論文]

金子研の論文が Chemometrics and Intelligent Laboratory Systems に掲載されましたので、ご紹介します。タイトルはAdaptive design of experiments based on G...

バッチプロセスにおける特徴量の作り方

バッチプロセスにおいて、プロセスの異常を検出したり異常原因の診断をしたり、説明変数 X と目的変数 Y との間でモデル Y = f(X) を構築して X から Y を予測したり、Y が望ましい値になるようにバッチプロセスを設計したりすること...

「ゼロから作るDeep Learning: Pythonで学ぶディープラーニングの理論と実装」 ニューラルネットワークの基礎から深層学習(ディープラーニング)を学び実践したい方が読む本

斎藤康毅, 「ゼロから作るDeep Learning: Pythonで学ぶディープラーニングの理論と実装」, O'Reilly(オライリー・ジャパン), 2016O'Reilly(オライリー・ジャパン): Amazon: ニューラルネットワ...

材料の結晶構造を考慮して熱電変換材料を設計しました![金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルはDesign of thermoelectric materials with high electrical condu...

「エンジニアのための実践データ解析」 データ解析をすぐに実践したい方が読む本

藤井宏行, 「エンジニアのための実践データ解析」, 東京化学同人, 2005東京化学同人: Amazon: もともとは化学工学会の学会誌に連載されていた “ケミカルエンジニアのための統計的品質管理入門” の内容を加筆修正された本です。学生の...

ベイズ最適化で複数の目的変数がある場合の対応[Probability of Improvement(PI)以外]

適応的実験計画法により、高機能性材料を達成するための実験条件・製造条件を探索したり、高性能プロセスを開発するためのプロセス条件を探索したりするとき、ベイズ最適化を用いることで効率的に外挿を探索しながら目標達成を目指すことができます。設計問題...
タイトルとURLをコピーしました