研究室

研究室の教育における平等と公正@金子研

大学では主に学部 1 年生から 3 年生の間で講義科目があったり実験科目があったりして、4 年生から研究室に配属になると思います。ここでお話する教育とは、講義科目や実験科目ではなく、特に研究室における (データ化学工学研究室 (金子研) で...

金子研における新人教育(新人研修)

データ化学工学研究室 (金子研) における新人教育について、大学や企業の方々から質問されることが増えてきましたので、金子研に配属になった学生が研究テーマに入る前に何をするか示しておきます。明治大学の応用化学科では、例年 12 月くらいに学部...

カーネル関数の選び方

機械学習の手法の中には、カーネル関数を用いた手法があります。サポートベクターマシン、サポートベクター回帰、ガウス過程回帰あたりが有名と思います。他にもリッジ回帰や主成分分析、独立成分分析など、いろいろな手法とカーネル関数を組み合わせることが...

欠損値のないサンプルがデータセットにないときの iGMR の使い方

データセットの中に欠損値があるときは、iGMR が有効であることはこちらに書きました。たとえば、論文や特許からデータを取得したときなど、他のデータ (研究室内や社内のデータなど) と合わせようとしたときに、論文や特許ではいくつかの実験条件が...

DCEKit に新機能追加 [v2.6.1]!トレーニングデータなしでスペクトルから濃度を推定する方法

DCEKit への新機能追加です。こちらの Iterative Optimization Technology (IOT) を実装しました。IOT では、純成分のスペクトルと混合物のスペクトルのみから、混合物における各純成分の濃度 (モル分...

DCEKit に新機能追加 [v2.5.2]!Variational Bayesian Gaussian Mixture Regression(VBGMR)とクロスバリデーションによるGMR最適化

DCEKit に今回追加したのは Variational Bayesian Gaussian Mixture Regression (VBGMR) と、GMR や VBGMR におけるクロスバリデーションによるハイパーパラメータ最適化です。...

「パターン認識と機械学習 下 ~ベイズ理論による統計的予測~」 データ解析・機械学習の中級者以上向けの、より深く学ぶための本

C.M. ビショップ 編, 「パターン認識と機械学習 下 ~ベイズ理論による統計的予測~」, 丸善出版, 2012丸善出版: Amazon: こちらの下巻です。Pattern Recognition and Machine Learning...

「パターン認識と機械学習 上 ~ベイズ理論による統計的予測~」 データ解析・機械学習の中級者以上向けの、より深く学ぶための本

C.M. ビショップ 編, 「パターン認識と機械学習 上 ~ベイズ理論による統計的予測~」, 丸善出版, 2012丸善出版: Amazon: Pattern Recognition and Machine Learning、いわゆる PRM...

ガウス過程による潜在変数モデルでプロセスデータの可視化やプロセス状態推定をしました![金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルはEstimation and visualization of process states using latent v...

「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」 化学・化学工学のデータ解析・機械学習をしたい方へ

金子弘昌, 「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」, オーム社, 2023オーム社: Amazon: 自分の本の紹介で恐縮です。ただ、データ解析や機械学習による分子設計、材料設計、プロセス設計、プロセス管理・...
タイトルとURLをコピーしました