研究室

モデルの解釈に関する考え方・スタンス

金子研オンラインサロンにおける話題の中から一つ。 Slack で機械学習によって構築されたモデルの解釈に関する質問があり、わたしが回答しました。 質問や回答の詳細は伏せますが (興味のある方はオンラインサロンにご登録くださいw) モデルの解...

緒言って何??何を書けばいいの??背景とか はじめに とか要旨とか概要とは違うの!?

論文や雑誌を読んでいると、緒言 (Introduction, イントロダクション) の章がありますよね。読むときはあまり意識しないかも知れませんが、いざ自分で論文を書こうとなると、緒言には何を書けばよいの??ってなりませんか? 背景 (Ba...

主成分分析(Principal Component Analysis, PCA)の前に変数の標準化(オートスケーリング)をしたほうがよいのか?

変数がたくさんある多変量データを解析する前に、変数の標準化 (オートスケーリング) をすることは、こちらに書きました。 データセットの可視化手法であり低次元化手法でもある主成分分析 (Principal Component Analysis...

学生が論文を書くことの、学生にとっての 10 のメリット

一般的には、研究成果が出たら、その内容を論文化して学術誌に投稿します。ただ、一つ論文を書くのも一苦労です。論文書くの面倒だなあ・・・と思う人もいるのではないでしょうか。学生にとっては、学位を取得するために論文が必要な場合を除いては、論文を書...

2018年度金子研オンラインサロンメンバー限定 データ化学工学研究室(金子研究室)成果報告会を終えて

1月29日 (火) に、金子研オンラインサロンメンバー限定のデータ化学工学研究室 (金子研究室) 成果報告会を行ってまいりました。最終的なプログラムは以下のとおりです。 === 金子研オンラインサロンメンバー限定 2018年度データ化学工学...

科研費や助成金やDC1などで採択されたときの申請書を公開します!

これまで科研費だけでなく、いろいろな財団からの助成金をいただき、研究を進めたり研究成果を発表したりしてまいりました。そのお陰様をもちまして、順風満帆に研究を進められております。感謝申し上げます。 研究を進めるためにお金が必要なことは、研究者...

モデルの推定性能を評価しても、その結果で最適化したら評価にならないので注意ですよ!

データ解析とか機械学習とかの話です。こちらの話と関連があります。 たとえば回帰分析で、最小二乗法による線形重回帰分析 (Ordinary Least Squares, OLS) をしたとします。 クロスバリデーションで外部データに対する O...

MATLAB に慣れた人が Python を始めるときの11の注意点

この記事では、MATLAB にある程度慣れている人の中で、これから Python をはじめる人を対象としています。両方ともプログラミング言語で似ているところもあるため、0 から Python をはじめるよりは MATLAB を経験していたほ...

データ解析・機械学習をはじめたいとき、市販のソフトウェアを使うのがよいか、プログラミングを勉強するのがよいか、それぞれのメリット・デメリットを考える

手持ちのデータを解析したり、データを用いて機械学習したりしたいとき、大きく分けて2つの方法があります。 データ解析や機械学習ができるソフトウェアを用いる プログラミングを学び、データ解析や機械学習をする です。ソフトウェアは、「データ解析 ...

2018年度データ化学工学研究室(金子研究室)成果報告会をやります!

タイトルのとおりでして、金子研の学生たちが今年度に研究した成果を報告します。成果報告会と同じ週に応用化学科での四年生の卒業研究発表会がありまして、皆さん発表の完成度を上げていきますので、四年生もしっかりした発表になると思います。 成果報告会...
タイトルとURLをコピーしました