ケモインフォマティクス

目的変数yも特徴量エンジニアリング!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

Datachemical LABでデータに嘘をつかないデータ解析・機械学習を

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

同じ実験条件で何回か実験した結果があるときのデータ解析・機械学習

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

実践的な練習課題を Datachemical LAB で解き実践力をつける

Datachemical LAB の利用者が順調に増えております。いつもご活用をいただきありがとうございます。これまで Datachemical LAB の内容・機能のお話をいたしました。 ケモインフォマティクス・マテリアルズインフォマティ...

金子はコンサルティングで何をしているのか?

大学教員として教育・研究をする中で、他の大学や企業の方と共同研究をすることがあります。同じ研究目的をもち、それぞれのグループで目的を達成するために研究したり、ディスカッションして前に進めたりしています。共同研究については、もちろんプロセスと...

Datachemical LAB のメニューが新しくなり、さらに使いやすくなりました!

Datachemical LAB をご検討いただきありがとうございます。順調にユーザーの数も増えており、多くの方にご利用いただき嬉しい限りです。ぜひ、材料設計・分子設計・プロセス設計・プロセス管理にご活用いただければと思います。 Datac...

不均衡なデータセットを扱うときの注意点

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

スパースな(疎な)実験データセットを解析するときの一工夫

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

サンプルが少なくてもまずはデータ解析・機械学習してみよう!

データ解析・機械学習関係のよくある質問の中に、何サンプル集めればデータ解析・機械学習で分子設計・材料設計・プロセス設計ができますか?、といったものがあります。また、具体的に何サンプルしかないのですがこれでできますか、といった心配をされる方も...

GAPLSやGASVRだけでなくGA+回帰分析手法で変数選択・特徴量選択

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました