ケモインフォマティクス

機械学習モデルの逆解析の整理〜線形・非線形モデル、xの制約あり・なし、線形計画法、直接的逆解析、化学構造など

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

既存のデータがある時に次の実験条件をどう決めるか~実験計画法で決めるかモデルを作ってしまうか

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

たくさん論文を読もう!

学生を含む研究者は、たくさん論文を読むと研究のアイディアにつながると思います。 研究者は、研究成果が得られたら論文で研究成果を発表します。論文は研究成果の宝庫であり、また研究成果は何らかの研究アイディアに基づいて得られていることからも、研究...

人の知見・経験・感性などをどのようにデータ解析・機械学習に取り入れるか?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

11th Asian Symposium on Process Systems Engineering (PSE ASIA 2024)@Penangに学生たちといってきました!

2024 年 8 月 5 日から 8 日までマレーシアのペナンで開催されていた 11th Asian Symposium on Process Systems Engineering (PSE ASIA 2024) に修士2年の学生7人と参...

トレーニグデータを増やしてテストデータを予測したらどうなった?

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

澤田敏樹氏を明治大学生田キャンパスにお招きして講演していただきました

2024年7月25日(木)に、東京工業大学の物質理工学院の応用化学系で准教授をされている 澤田敏樹 氏を明治大学生田キャンパスにお招きしまして遺伝子改変と機械学習を利用したバイオ高分子の合目的的な機能創出に関するご講演をしていただきました。...

サンプルごとに時間の異なる時系列データを特徴量とする時の4つの対処法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

ダブルクロスバリデーションの中でハイパーパラメータがコロコロ変わっても問題ありません!

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...

同じ化合物を含むデータセットにおける化合物の分子記述子の前処理方法

分子設計・材料設計・プロセス設計・プロセス管理において、分子記述子・実験条件・合成条件・製造条件・評価条件・プロセス条件・プロセス変数などの特徴量 x と分子・材料の物性・活性・特性や製品の品質などの目的変数 y との間で数理モデル y =...
タイトルとURLをコピーしました