ケモインフォマティクス

Boruta の使い方

特徴量選択手法もしくは変数選択手法の一つに、Boruta があります。 こちらのこちらに書いた通り、 特徴量選択では、「予測精度」が上がるように特徴量を選ぶというより、不要な特徴量を削除するという意識で実施するとよいです。なぜなら、たとえト...

正則化項により過学習(オーバーフィッティング)を防ごう!

回帰モデルを構築するとき、過学習 (オーバーフィッティング) が問題になります。ここではリッジ回帰・LASSO・Elastic Net といった正則化項を用いる手法を例にして、 最小二乗法による線形重回帰分析との関係や、オーバーフィッティン...

「Pythonで気軽に化学・化学工学」出版記念、購入者限定の無料講演会「教えて金子先生!『Pythonで気軽に化学・化学工学』をうまく活用するにはどうしたらいいの?」 を開催します![2021年6月2日(水)19時-]

2021年5月1日に、「Pythonで気軽に化学・化学工学」 が出版されました。初日に Amazon で売り切れになるなど、初速として好調のようです。ご購入いただいた皆さまにお礼申し上げます。ありがとうございます。 プログラミングやPyth...

Gaussian Mixture Regression (GMR) を拡張して直接的モデル逆解析の予測精度を向上させました![金子研論文]

金子研の論文が Chemometrics and Intelligent Laboratory Systems に掲載されましたので、ご紹介します。タイトルは Extended Gaussian Mixture Regression for...

[無料公開] 「Pythonで気軽に化学・化学工学」 の “まえがき”、目次の詳細、第1・2・3章

2021 年 5 月 1 日に、金子弘昌著の「Pythonで気軽に化学・化学工学」が出版されました。 丸善: Amazon: Amazon(Kindle): こちらの本は、前著の 「化学のための Pythonによるデータ解析・機械学習入門」...

アンサンブル学習の有効な活用方法

回帰分析やクラス分類のときに、アンサンブル学習をすることがあります。アンサンブル学習では、たくさんの回帰モデルやクラス分類モデルを構築します。一つ一つのモデルの予測精度は低くても、総合的にモデルを用いることで、予測精度を向上させることができ...

波長選択と転移学習により培養液におけるグルコース濃度と乳酸濃度の予測精度が向上しました![日立製作所&金子研の共同研究論文]

日立製作所と金子研における共同研究の成果の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルは Transfer learning and wavelength selection ...

データセットを可視化・見える化する手法の選び方

講演会やセミナーなどでよくいただく質問の一つに、データの可視化手法・見える化する手法はどのように選べばよいですか、というのがあります。難しい質問です。というのも、回帰分析やクラス分類であればこちらの基本的な解析の流れにそって適切な手法を選ぶ...

データサイエンティストと実験科学者の協働や、実験科学者がデータサイエンティストになることのメリット

データ解析・機械学習が得意な方が、扱うデータセットにおける実験系の実験科学者と共同で研究やプロジェクトを進めたり、実験科学者がデータ解析・機械学習を勉強してデータサイエンティストになったりすることがあります。このような場合のメリットについて...

外挿を予測するならローカルモデルではなくグローバルモデルでしょう!

一般的なデータ解析・機械学習では、一つのデータセットがあるとき、一つのモデルを構築します。こちらのデータ解析の流れにそって、 最終的に、例えばガウス過程回帰で、一つのモデルを構築することになります。アンサンブル学習では、たくさんのサブデータ...
タイトルとURLをコピーしました