
非線形モデルにおける特徴量の寄与の指標を有効に活用する方法
回帰モデルでもクラス分類モデルでも、モデルを構築したらそのモデルの解釈をしたくなるものです。どの説明変数 (特徴量・記述子・パラメータ) が...
データ化学工学研究室(金子研究室)@明治大学 理工学部 応用化学科
化学・工学データを使える知識に変える世界でたった一つの研究室
回帰モデルでもクラス分類モデルでも、モデルを構築したらそのモデルの解釈をしたくなるものです。どの説明変数 (特徴量・記述子・パラメータ) が...
金子研の学生たちが今年度に研究した成果を報告します。成果報告会の翌週に応用化学科での四年生の卒業研究発表会がありまして、皆さん発表の完成度を...
回帰モデルやクラス分類モデルを構築したあとの、モデルの逆解析についてです。 こちらのチェックリストを確認したあとの話で...
データセットは生きている、と思いながら解析するようにしています。ただ、生物とは何か、、、という話にするつもりはなくてですね、データセットは、...
いつもどんな感じで回帰分析手法・クラス分類手法を選んでいるかお話します。予測結果の r2, RMSE, MAE, 正解率, ... といった...
オーバーフィッティングについて考えます。オーバーフィッティングは予測精度の高いモデルを構築するときの問題でして、モデルがトレーニングデータに...
2019年11月23日(土) に応用化学科ポスター発表会がありました。 金子研、練習もばっちりです。お待ちしております! わ...
データ化学工学研究室 (金子研) では、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスに関する、いろいろ...
Amazon をはじめとして、在庫の補充が遅れており申し訳ございません。発売 3 日後に重版がかかるなど、理工学書としてこれまでにない売れ行...
2019 年 10 月 23 日に、金子弘昌著の「化学のための Pythonによるデータ解析・機械学習入門」が発売になりました。 オー...