ケモメトリックス

ひと足先に2019年度のシラバス公開 (分離化学工学・化学プロセスシステム工学・化学工学特論2)

今年度分の講義の内容の書かれたシラバスについては、学部はこちらから、大学院はこちらから見ることができます。ちょうど今は来年度分のシラバスを作成する時期でして、今年度の講義における学生からのフィードバックを参考にして、作り終えました。そこで、...

独立成分分析 (Independent Component Analysis, ICA) ~PCAの無相関より強力な ”独立” な成分を抽出~

よく、主成分分析(Principal Component Analysis, PCA) と比べられることが多い、独立成分分析 (Independent Component Analysis, ICA) についてです。PCA ではデータを低次...

ダブルクロスバリデーション(モデルクロスバリデーション)でテストデータいらず~サンプルが少ないときのモデル検証~

回帰モデルやクラス分類モデルを検証するときの話です。モデルの検証一般的には、データセットが与えられたとき、サンプルをモデル構築用サンプル (トレーニングデータ, training dataset) とモデル検証用サンプル (テストデータ, ...

スペクトル・時系列データの前処理の方法~平滑化 (スムージング) と微分~

スペクトル解析のときや、時系列データを扱うときの話です。いくつかの点でスペクトルデータと時系列データは似ています。たとえば、隣同士の値が似ているっていう点ですね。他にも、データにノイズが含まれるという点も共通した特徴です。このようにスペクト...

[Pythonコードあり] サポートベクター回帰(Support Vector Regression, SVR)のハイパーパラメータを高速に最適化する方法

サポートベクター回帰 (Support Vector Regression, SVR) は、こちら:サポートベクター回帰(Support Vector Regression, SVR)~サンプル数10000以下ならこれを使うべし!~ にある...

適応的な実験計画法の概要と研究の方向性 (実験・シミュレーションのデータベース利用)

最初に、材料・製品設計と、プロセス・装置設計の話をします。材料設計・製品設計こちら:分子設計・化学構造設計の概要と研究の方向性 (化合物データベース利用) のような分子設計により、化合物を開発した後は、それを適切に材料や製品にしなければなり...

Pythonで試行錯誤しながらデータ解析をしていただいた話~第7回ケモインフォマティクス入門講座~

受講者のユーザーエクスペリエンスを大事にする 第7回ケモインフォマティクス入門講座 中級編  において講師 兼 ファシリテーターを務めてまいりました。内容としては、ケモメトリックスの基礎を学びサンプルデータなどでケモメトリックス手法を用いる...

プロセス制御・プロセス管理・ソフトセンサーの概要と研究の方向性 (化学プラントにおけるデータベース利用)

化学プラント・産業プラントは、温度・圧力・流量・濃度といった いろいろなプロセス変数を制御 (コントロール) しながら運転する必要があります。設定値の変更たとえば、製品の生産量を増やしたい・減らしたいときや製品の銘柄を変えたいとき、なるべく...

分子設計・化学構造設計の概要と研究の方向性 (化合物データベース利用)

分子設計、つまり目的に応じた化学構造の設計についての話です。分子設計を応用する対象が、医薬品のときは、医薬品設計や薬物設計と呼ばれたりもします。分子設計とは?分子設計の目的は、高い機能をもつ化合物をつくることです。たとえば、 よく効く薬 (...

金子研で高分子を扱う!?高分子計算機科学研究会で招待講演

2017年10月20日の高分子計算機科学研究会にお招きいただき、講演して参りました。今回の研究会の主題は、材料設計に向けたインフォマティックス技術とその応用です。研究会における講演の中のキーワードを並べると、 高分子材料 データベース デー...
タイトルとURLをコピーしました