データ解析

目的変数に上限や下限があるときの回帰分析の潜在的問題と、その解決方法

回帰分析をするとき、目的変数 y に上限や下限のある変数を使用するときがあります。0 から 1 までの値だったり、0 % から 100 % までの間だったりする変数です。基本的には、回帰分析における y として使用して問題ありません。ただ、...

三つの本の使い分け

2021年8月1日現在、金子弘昌 著の3冊の本が出版されています。金子研オンラインサロンでは、本の内容に関する質問をいただいたり議論が深まったりして嬉しい限りです。修正点などのご指摘もいただき、実際に私の方で修正し、内容的にもアップデートさ...

過学習(オーバーフィッティング)が怖いときはアンサンブル学習と組み合わせよう!

過学習 (オーバーフィッティング) した回帰モデルやクラス分類モデルがあるとき、そのようなモデルとアンサンブル学習との相性はよいです。そもそもアンサンブル学習は、精度が低いモデルでもたくさん用いて予測することで、最終的な精度を向上させる学習...

「Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析」 化学・化学工学のデータ解析・機械学習を学びながら実験計画法やベイズ最適化を実践したい方へ

金子弘昌, 「Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析」, 講談社, 2021講談社: Amazon: 自分の本の紹介で恐縮です。ただ、ケモインフォマティクス、マテリアルズインフォマティクス、プロセスインフォマティクス...

直接的逆解析法では特徴量の制約、定性的な特徴量、転移学習も扱えます

金子研で開発している直接的逆解析についてです。(直接的逆解析ではない) いわゆる一般的な逆解析では、モデルを構築した後に、説明変数 x の大量のサンプルを生成し、構築したモデルに入力し、目的変数 y の値を予測します。そして予測値が良さそう...

「Pythonで気軽に化学・化学工学」 Python プログラミングを学びながら化学・化学工学のデータ解析・機械学習をしたい方へ

金子弘昌, 「Pythonで気軽に化学・化学工学」, 丸善, 2021丸善: Amazon: Amazon(Kindle): 自分の本の紹介で恐縮です。ただ、データ解析や機械学習による分子設計、材料設計、プロセス設計、プロセス管理・制御をし...

モデルの逆解析をふまえた特徴量設計

既存のデータセットを用いて、説明変数 x と目的変数 y の間で、回帰分析手法やクラス分類手法により、モデル y = f(x) を構築したり、構築したモデルを用いて、望ましい y の結果になるように x の値を設計したりします。予測精度の高...

Anacondaを使わずにPythonでデータ解析・機械学習する方法

Anaconda が、ある条件のもとで有償化されています。参考: 原文: 個人的な趣味で Anaconda を利用したり、大学や研究所において教育・研究するために Anaconda を用いたりするときは問題ないと思いますが、例えば企業におい...

「Pythonで気軽に化学・化学工学」 正誤表

「Pythonで気軽に化学・化学工学」 をご購入いただき感謝申し上げます。売れ行きも好調のようで嬉しい限りでございます。データを持っていたり、収集する予定だったりする多くの方が、プログラミングが未経験でもデータ解析・機械学習をできるようにな...

特徴量選択の結果をこのように整理してはいかがでしょうか?[Pythonコードあり]

説明変数 x と目的変数 y の間で回帰モデルやクラス分類モデルを構築するとき、モデルの予測精度やモデルの解釈性を向上させるため、特徴量選択 (変数選択) をすることがあります。例えば 1000 個の x があるとき、特徴量選択をして 50...
タイトルとURLをコピーしました