プログラミング

GridSearchCVでハイパーパラメータの最適化に失敗した時の原因と対処法

回帰モデルやクラス分類モデルにおけるハイパーパラメータを最適化するため、scikit-learn の GridSearchCV を使用する人がいらっしゃると思います。特に複数の種類のハイパーパラメータがあるとき、GridSearchCV を...

回帰分析手法やクラス分類手法のハイパーパラメータをベイズ最適化で高速に最適化する

DCEKit に搭載されている Gaussian Mixture Regression (GMR) や Variational Bayesian Gaussian Mixture Regression (VBGMR) について、 クロスバリ...

時系列データにおけるモデル適用範囲

目的変数 y と説明変数 x のデータを準備して、x と y の間で数理モデル y = f(x) を構築し、モデルに基づいて x の値から y の値を予測したり、y の値が目標値になるような x の値を設計したりします。モデルで予測するとき...

Python の環境の準備とspyderやjupyter notebookの起動まで(Windows編とmacOS編)

Python プログラミングを行うための環境を準備する方法はいろいろとあります。有名なのは Anacondaを利用する方法です。一方で、一部の方にとっては Anaconda は有料であり、少し壁があるかもしれません。もちろん Anacond...

重要度は高いと計算された特徴量が、ドメイン知識的には重要そうでないとき何が起きているのか?

分子設計・材料設計・プロセス設計において、分子記述子や合成条件・製造条件やプロセス条件などの説明変数 x と活性・物性・特性などの目的変数 y の間で数理モデル y = f(x) を構築し、x から y を予測したり、y が目標値になるよう...

金子研で研究員を募集するとしたら?

今すぐというわけではありませんか、予算を確保できたときには、ポスドクを含む研究員を雇う予定でいます。今回は、その状況になったときのための整理をする記事になります。 基本的に研究員の方には、化学や化学工学のデータを扱った機械学習・データ解析を...

新たなプログラムを作成する流れ~言語化が一番大事~

ケモインフォマティクスやマテリアルズインフォマティクスやプロセスインフォマティックスの研究をするなかで、手法の開発するときには、何らかのプログラミング言語でプログラムを作成することが必要になります。ちなみに金子研 (データ化学工学研究室) ...

任意のクラスタリング手法においてクラスター数を自動的に決める方法

回帰分析やクラス分類などの教師あり学習における各手法のハイパーパラメータ (PLS における成分数や SVR における C, ε など) と比べて、データの可視化やクラスタリングなどの教師なし学習における各手法のハイパーパラメータ (t-S...

三つの本の使い分け

2021年8月1日現在、金子弘昌 著の3冊の本が出版されています。 金子研オンラインサロンでは、本の内容に関する質問をいただいたり議論が深まったりして嬉しい限りです。修正点などのご指摘もいただき、実際に私の方で修正し、内容的にもアップデート...

「Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析」 化学・化学工学のデータ解析・機械学習を学びながら実験計画法やベイズ最適化を実践したい方へ

金子弘昌, 「Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析」, 講談社, 2021 講談社: Amazon: 自分の本の紹介で恐縮です。ただ、ケモインフォマティクス、マテリアルズインフォマティクス、プロセスインフォマティク...
タイトルとURLをコピーしました