ケモインフォマティクス

第7回ケモインフォマティクス若手の会におけるディスカッション用の資料を公開~Generative Topographic Mapping(GTM)でデータの可視化・回帰分析・モデルの逆解析を一緒にやってみた~

2018年5月22日(火)に第7回ケモインフォマティクス若手の会があります。当日は講演をさせていただくのですが、ワールドカフェ形式のグループディスカッションもありまして、そこでも話題提供をします。 タイトルは、こちらにありますように Gen...

単純ベイズ分類器 (ナイーブベイズ, Naïve Bayes Classifier) でクラス分類

今回は、単純ベイズ分類器 (ナイーブベイズ, Naïve Bayes Classifier) についてです。ナイーブベイズにより多クラス分類ができます。推定結果として、各クラスに属する確率で得られるため、推定結果が得られた後の検討がしやすい...

回帰分析のときに外れサンプルを検出する手法を開発しました [金子研論文]

応化先生と生田さんが論文 “Automatic outlier sample detection based on regression analysis and repeated ensemble learning” について話しています...

プロセス・マテリアルズ・ケモインフォマティクスオンラインサロン (金子研オンラインサロン) をやっています!

金子研の外部の方向けに、金子研主催で無料のオンラインサロンをはじめました。slackでやりまして、オンラインサロンのメンバー登録やサロン内での質問・コメントなどの活動、すべて無料です。2024 年 1 月現在、登録者 900 名です。 デー...

One-Class Support Vector Machine (OCSVM) で外れ値・外れサンプルを検出したりデータ密度を推定したりしよう!

今回は、One-Class Support Vector Machine (OCSVM) についてです。OCSVM は SVM を領域推定問題に応用した手法であり、外れ値・外れサンプルを検出できたり、データ密度を推定できたりします。データ密...

外れ値検出 (Outlier Detection) もしくは 外れサンプル検出 (Outlier Sample Detection) ~他の値・サンプルと大きく異なる値・サンプルを見つけよう!~

今回は、外れ値検出 (Outlier Detection) もしくは 外れサンプル検出 (Outlier Sample Detection) についてです。他の値と大きく異なる値を見つけたり、他のサンプルと大きく異なるサンプルを見つけたりす...

k最近傍法(k-Nearest Neighbor, k-NN)でクラス分類・回帰分析・モデルの適用範囲(適用領域)の設定をしよう!

今回は、k最近傍法 (k-Nearest Neighbor, k-NN) についてです。k-NN だけで、 クラス分類 回帰分析 モデルの適用範囲(適用領域)の設定 の3つもできてしまうんです。 そんな有用な k-NN について、pdfとパ...

Adaboost (Adaptive Boosting) によるアンサンブル学習のやり方を解説します

今回は、アンサンブル学習の方法の一つである Adaboost (Adaptive Boostling) です。アンサンブル学習についてはこちらをご覧ください。 Adaboost は単純なアンサンブル学習より精度が上がると言われています。そん...

日本薬学会第138年会@金沢 で金子研の学生の研究発表

2018年3月25, 26, 27, 28日に開催されました 日本薬学会 第138年会(金沢) ~ 次世代に向けた創薬/医療イノベーションの今 ~ に参加して、データ化学工学研究室(金子研)の学生2名が口頭発表して参りました。 とても大規模...

2017年度における学生の研究まとめ

本日は明治大学の卒業式+学位記授与式です。データ化学工学研究室 (金子研) の3人の4年生も卒業します。一年間、早いものです。 3人とも修士に進学しますので、研究室内の状況としてはあまり変わらないのですが、一つの区切りですので、4年生の一年...
タイトルとURLをコピーしました