
データの見える化・可視化をした結果を評価する指標を開発しました、ハイパーパラメータの設定もこれでOK (Python・MATLABプログラムあり)
応化先生と生田さんが論文 “k-nearest neighbor normalized error for visualization an...
データ化学工学研究室(金子研究室)@明治大学 理工学部 応用化学科
化学・工学データを使える知識に変える世界でたった一つの研究室
応化先生と生田さんが論文 “k-nearest neighbor normalized error for visualization an...
プログラミングを始めると、やっぱり最初の壁が大きいです。プログラミングしてやりたいことができず、つまらなくなってしまう人もいると思います。 ...
どうして クロスバリデーション しないの? データ解析をしていると、いろいろな理由でクロスバリデーションを使いたくない、もしくはクロスバリ...
今年度分の講義の内容の書かれたシラバスについては、学部はこちらから、大学院はこちらから見ることができます。ちょうど今は来年度分のシラバスを作...
サポートベクター回帰 (Support Vector Regression, SVR) は、こちら:サポートベクター回帰(Support V...
受講者のユーザーエクスペリエンスを大事にする 第7回ケモインフォマティクス入門講座 中級編 において講師 兼 ファシリテーターを務めてまい...
退路を断つため、決意表明します。データ化学工学研究室(金子硏)のメンバーで1つのグループとして、第4回 IT創薬コンテスト:「コンピュータで...
データセットを読み込んだあとに、まずやったほうがよい基本的なデータの前処理についてです。 最低限、この前処理は行いましょう! とりあえず...
2017年5月16日(火)に第5回ケモインフォマティクス若手の会があります。そこでワールドカフェ形式のグループディスカッションがありまして、...
データ化学工学研究室(金子研)では、新しく配属になった学生にいろいろなトレーニングをしています。その1つがPython言語のトレーニングです...