ケモメトリックス

[法人向け] 機械学習・データ解析・化学構造の扱い・Pythonに関するハンズオンセミナー (体験学習) の動画

これまで、いろいろな企業やセミナーにおいて、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの講義や、Python のハンズオンセミナーを行って参りまして、そのような経験・実績をふまえて、以下の動画を作成い...

モデルの精度が低いときも、モデルの逆解析ってやるべき?

いろいろと共同研究やコンサルティングをしていますとやはり多いのは、モデルの逆解析です。新たな分子を設計したり、新たな材料を作るための実験レシピやプロセスを設計したり、装置を設計したりといった話です。モデルの逆解析をするためには、もちろんモデ...

ベイズ最適化において一度に複数の実験をするときに候補を選択するシンプルな方法

ベイズ最適化において、複数の実験候補を選択するお話です。ベイズ最適化についてはこちらをご覧ください。ベイズ最適化では、以下の 1. – 4. を繰り返すことで、物性や活性などの目的変数 Y が向上したり目標値を達成したりできる、実験条件など...

[Pythonコードあり] 特徴量ごとや特徴量間に制限があるときの、モデルの逆解析用のサンプル生成

回帰モデルやクラス分類モデルを構築した後の、モデルの逆解析の話です。上の 既存のサンプルの分布に従うように、モデルの逆解析用のサンプルをたくさん生成する方法 では、既存のサンプルのデータ分布を求めて、その分布に従うようにして新たなサンプルを...

[Pythonコードあり] 既存のサンプルの分布に従うように、モデルの逆解析用のサンプルをたくさん生成する方法

回帰モデルやクラス分類モデルを構築した後は、モデルの逆解析をします。説明変数 (特徴量・記述子など) X のサンプルをたくさん生成して、それらをモデルに入力することで、目的変数 (活性・物性など) Y の値を推定します。推定された値が、より...

ベイズ最適化で期待できること

材料の活性・物性・特性は、化学構造だけで変化するものではなく、材料の作り方、つまり実験条件や製造条件によっても変化します。例えば高分子設計において、単量体 (モノマー) の化学構造だけでなく、そのモノマーの種類・組成比や、反応温度や反応時間...

サンプルを集めるときに意識するとよいこと [データベース作成]

分子設計や材料設計をするときや、プラントにおいてソフトセンサーを検討しようとするとき、(分子設計・材料設計・ソフトセンサーについてはこちら)それぞれ、何らかの数値モデルを構築することになります。データ解析・機械学習を駆使してモデルを構築する...

新たなアンサンブル学習法を開発しました![金子研論文][Pythonプログラム付き]

昨年度の金子研の四年生が主に研究していたテーマの成果が、Journal of Computer Chemistry, Japan にて論文公開になりました。タイトルはモデルの適用範囲の考慮したアンサンブル学習法の開発です。下の URL から...

2019年度金子研オンラインサロンメンバー限定 データ化学工学研究室(金子研究室)成果報告会を終えて

一年に一度の、金子研オンラインサロンメンバー限定のデータ化学工学研究室 (金子研究室) 成果報告会です。2019 年度は 1 月 28日 (火) に行ってまいりました。最終的なプログラムは以下のとおりです。===金子研オンラインサロンメンバ...

化合物における三次元の化学構造の扱い、構造最適化計算のメリット・デメリット

化合物データの解析をすることを考えます。化合物の化学構造や物性・活性・特性が大事になります。 化合物の物性・活性・特性や化学構造の扱いについてはこちらをご覧ください。化合物において、その化学構造の特徴を数値化し、数値化したものと物性・活性・...
タイトルとURLをコピーしました