ケモメトリックス

2018 年度における学生の研究まとめ

昨年度も 3 月に金子研の学生たちが卒業していきました。少し遅くなってしまいましたが、2018 年度の学生の研究成果をまとめておきます。江尾は医薬品設計に関する研究です。活性の測定された化合物を用いて、活性 y と記述子 x との間で機械学...

回帰分析における目的変数の実測値 vs. 推定値プロットを、解像度を上げて見る

解像度を上げるといっても、画素の密度を上げるわけではなく、より詳細に検討するということです。回帰分析をしたら、以下のような目的変数の実測値 vs. 推定値プロットが得られたとしましょう。ちなみにこのプロットは、こちらの論文にある沸点のデータ...

メインの骨格を適当に変えたり、側鎖を適当に変えたりして、新たな化学構造を生成するPython プログラムを公開します

以前に、Structure Generator based on R-Group (SGRG) という化学構造を生成する Python プログラムを公開しました。こちらは、メインの骨格を一つに設定して、その自由結合手に結合する側鎖を、フラグ...

回帰分析のときにアンサンブル学習で自動的かつロバストに外れサンプルを見つける Python プログラムを公開します

今回は外れサンプルを検出するお話です。外れ値ではなく外れサンプルです。外れ値は、他の値と (大きく) 離れた値のことであり、外れ値がデータ解析のときに悪影響を及ぼすことがあります。ただ、回帰分析のときには、大事なのは説明変数 X と目的変数...

共同研究・コンサルティングの相談や技術相談をご検討の方は、こちらをご一読いただけますと幸いです

共同研究・コンサルティングや技術相談のご検討をいただき、感謝申し上げます。一度 金子に会って相談したい、という方もいらっしゃると思います。とてもうれしいことです。ただ、とても多くの方から相談を受けていたり、その中で実際に共同研究・コンサルテ...

SVR(サポートベクター回帰)で誤差が一定のところにサンプルが固まるのはどうして?何か問題があるの? → SVR の特徴も確認!

SVR (Support Vector Regression, サポートベクター回帰) で回帰モデルを構築したことのある方は、下の図のように、実測値 vs. 推定値プロットにおいて、対角線から一定に離れたところにサンプルが固まっている、つま...

化学構造・分子・化合物の扱いに関する基本的なこと

データセットがあると、データセットの可視化・クラスタリング・クラス分類・回帰分析などができるようになったり、モデルの適用範囲を設定したり、実験計画法により実験候補を選択できます。こちらにいろいろな手法の説明があります。ただ、どの手法を使うに...

[デモのプログラムあり] 勾配ブースティングGradient Boosting、特に Gradient Boosting Decision Tree (GBDT), XGBoost, LightGBM

勾配ブースティングGradient Boosting、特に Gradient Boosting Decision Tree (GBDT), XGBoost, LightGBM について、パワーポイントの資料とその pdf ファイルを作成しま...

RDKit をインストールできなかったり import できなかったりしたときの対処法まとめ (Anaconda ユーザー向け)

分子の化学構造を扱うためのソフトウェア RDKit を Python で利用するためのインストールについてです。こちらの Python プログラミングの課題でも 18 から 20 までは RDKit を活用した課題です。分子設計をするときは...

目的変数が複数のときに実験計画法のベイズ最適化(Bayesian Optimization, BO)が対応!

実験計画法やベイズ最適化 (Bayesian Optimization, BO) についてはこちらに書いたとおりです。Python コードもあります。今回は実験計画法の BO について目的変数が複数のときに対応しましたので報告します。プログ...
タイトルとURLをコピーしました