プロセス制御・プロセス管理・ソフトセンサー

欠損値のないサンプルがデータセットにないときの iGMR の使い方

データセットの中に欠損値があるときは、iGMR が有効であることはこちらに書きました。たとえば、論文や特許からデータを取得したときなど、他のデータ (研究室内や社内のデータなど) と合わせようとしたときに、論文や特許ではいくつかの実験条件が...

DCEKit に新機能追加 [v2.6.1]!トレーニングデータなしでスペクトルから濃度を推定する方法

DCEKit への新機能追加です。こちらの Iterative Optimization Technology (IOT) を実装しました。IOT では、純成分のスペクトルと混合物のスペクトルのみから、混合物における各純成分の濃度 (モル分...

DCEKit に新機能追加 [v2.5.2]!Variational Bayesian Gaussian Mixture Regression(VBGMR)とクロスバリデーションによるGMR最適化

DCEKit に今回追加したのは Variational Bayesian Gaussian Mixture Regression (VBGMR) と、GMR や VBGMR におけるクロスバリデーションによるハイパーパラメータ最適化です。...

ガウス過程による潜在変数モデルでプロセスデータの可視化やプロセス状態推定をしました![金子研論文]

金子研の論文が Analytical Science Advances に掲載されましたので、ご紹介します。タイトルはEstimation and visualization of process states using latent v...

「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」 化学・化学工学のデータ解析・機械学習をしたい方へ

金子弘昌, 「化学のためのPythonによるデータ解析・機械学習入門(改訂2版)」, オーム社, 2023オーム社: Amazon: 自分の本の紹介で恐縮です。ただ、データ解析や機械学習による分子設計、材料設計、プロセス設計、プロセス管理・...

オーバーフィッティング(過学習)の本質を理解して実用的な議論をする

回帰分析やクラス分類を行うとき、オーバーフィッティング(過学習)をしないことが重要といわれます。オーバーフィッティングを防ぐため、クロスバリデーションでハイパーパラメータを決めたり、テストデータを用いて回帰分析手法やクラス分類手法を選んだり...

モデルの直接的逆解析法で効率的な適応的実験計画法ができるようになりました![金子研論文]

金子研の論文が Chemometrics and Intelligent Laboratory Systems に掲載されましたので、ご紹介します。タイトルはAdaptive design of experiments based on G...

どうしてGMRやGTMRといったモデルの直接的逆解析法は良好な結果を生み出すのか?

回帰モデルを直接的に逆解析ができる、すなわち説明変数 X から目的変数 Y (Y が複数でもOK!) を直接的に推定できる手法である Gaussian Mixture Regression (GMR) や Generative Topogr...

バッチプロセスにおける特徴量の作り方

バッチプロセスにおいて、プロセスの異常を検出したり異常原因の診断をしたり、説明変数 X と目的変数 Y との間でモデル Y = f(X) を構築して X から Y を予測したり、Y が望ましい値になるようにバッチプロセスを設計したりすること...

説明変数の重要度を考慮した新たな非線形サポートベクター回帰(SVR)を開発しました![金子研論文]

金子研の論文が Journal of Chemometrics に掲載されましたので、ご紹介します。タイトルはSupport vector regression that takes into consideration the impor...
タイトルとURLをコピーしました