ケモインフォマティクス

モデルの適用範囲(Applicability Domain, AD)の検討の仕方

データセットを用いて、目的変数 y と説明変数 x の間で回帰モデルやクラス分類モデルを構築した後に、モデルを適切に運用するため、モデルの適用範囲 (Applicability Domain, AD) を設定します。AD を設定する方法はい...

y-randomization(y-scrambling)の結果が悪いとき、どうすればいいのか?

回帰モデルやクラス分類を構築したいとき、扱うデータセットごとに適した手法は異なるため、今のデータセットに適した手法を選択するため、手法ごとの予測性能を評価します。トレーニングデータとテストデータに分けて、トレーニングデータで構築されたモデル...

手法や手段を目的化しないように気をつけましょう!~データ解析・機械学習が目的ではありません~

データ解析・機械学習によって分子設計・材料設計・プロセス設計などを効率化する試みがあります。例えば、目的変数 (物性・活性・製品品質など) y と説明変数 (実験条件・合成条件・プロセス条件など) x との間で、既存のデータセットに基づいて...

転移学習におけるモデルの適用範囲

転移学習にも色々とありまして、例えばディープニューラルネットワークを用いて、ソースドメインのデータセット (サポート用のデータセット) でネットワークを学習させておいて、中間層における最後の層のニューロンだけターゲットドメインのデータ (目...

クロスバリデーションとダブルクロスバリデーションの整理

言葉の似ているクロスバリデーションとダブルクロスバリデーションですが、意味合いが異なります。目的の違いとして、クロスバリデーションの目的は PLS における主成分の数や SVR における C, ε, γ といったハイパーパラメータを最適化す...

ガウス過程回帰におけるyの予測値の分散を検証する方法

金子研オンラインサロンにおいて、ガウス過程回帰において、予測値の分散が正しく評価されているのか、どのように検証したらよいか?、といった質問があり、回答しました。ガウス過程回帰の予測値の分散は、モデルの適用範囲やベイズ最適化にも活用され、気に...

低次元化を駆使して直接的逆解析法の予測精度を向上させる手法を開発しました![金子研論文]

金子研の論文が Chemometrics and Intelligent Laboratory Systems に掲載されましたので、ご紹介します。タイトルはLifting the Limitations of Gaussian Mixtu...

事実と解釈を分けて考える (モデルの解釈の話ではありません)

研究に関する議論をしたり、研究発表を聞いたり自分でしたり、研究論文を読んだり自分で書いたりするときに気をつけていることの一つとして、事実と解釈を分けて考える、ということがあります。例えば回帰モデルの予測精度の話で、あるモデルを用いてテストデ...

r2, RMSE, MAE は手法やモデルを比較するための指標です

講演会や金子研オンラインサロンにおいて、よくある質問の中に、 r2 はいくつ以上だったら良いモデルですか? RMSE や MAE がいくつ以下だったら良いモデルですか?といったものがあります。結論からいえば、r2, RMSE (Root-M...

協奏的な有機合成反応における機械学習手法と、既存の収率を超越する触媒設計手法を開発しました![理化学研究所&金子研の共同研究論文]

理化学研究所と金子研における共同研究の成果の論文が ACS Omega に掲載されましたので、ご紹介します。タイトルはDesign of Experimental Conditions with Machine Learning for C...
タイトルとURLをコピーしました