ケモインフォマティクス

2017年度における学生の研究まとめ

本日は明治大学の卒業式+学位記授与式です。データ化学工学研究室 (金子研) の3人の4年生も卒業します。一年間、早いものです。 3人とも修士に進学しますので、研究室内の状況としてはあまり変わらないのですが、一つの区切りですので、4年生...

混合ガウスモデル (Gaussian Mixture Model, GMM)~クラスタリングするだけでなく、データセットの確率密度分布を得るにも重宝します~

クラスタリングについては、階層的クラスタリングと k-means クラスタリングをやりました。 今回は、混合ガウスモデル (Gaussian Mixture Model, GMM) というクラスタリングの手法で...

異分野融合ワークショップ「データ科学との融合による化学の新展開」での招待講演@NAIST

2018年3月13, 14日で奈良先端科学技術大学院大学 (NAra Institute of Science and Technology, NAIST) において開催された異分野融合ワークショップ「データ科学との融合による化学の新展開」...

データの見える化・可視化をした結果を評価する指標を開発しました、ハイパーパラメータの設定もこれでOK (Python・MATLABプログラムあり)

応化先生と生田さんが論文 “k-nearest neighbor normalized error for visualization and reconstruction – A new measure for data visualiz...

アンサンブル学習でも、各サブモデルの適用範囲・適用領域をちゃんと考えよう!~Ensemble learning method Considering Applicability Domain of each Submodel (ECADS)~

応化先生と生田さんが論文 “Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels”...

アンサンブル学習 ~三人寄れば文殊の知恵~ たくさんモデルを作って推定性能を上げよう!

応化先生と生田さんがアンサンブル学習 (ensemble learning) について話しています。 応化:今日はアンサンブル学習 (ensemble learning) についてです。 生田:アンサンブル?音楽関係です...

k平均法 (k-means clustering) 非階層的クラスタリング

応化先生と生田さんが k平均法 (k-means clustering) について話しています。 応化:今回は、k平均法 (k-means clustering) についてです。クラスタリングですね。 生田:階層的なクラ...

ロバストなモデル・手法・方法ってどういうこと?推定性能が高い、とは違います!

応化先生と生田さんがロバストなモデルについて話しています。 応化:今回は、ロバスト (robust) についてです。日本語に訳すと、頑健、ですね。 生田:ロバストも頑健も聞いたことがありません! 応化:日常生活では...

人工知能・機械学習のときには過学習 (オーバーフィッティング) に気をつけよう!~過学習とその対処法~

応化先生と生田さんが過学習 (オーバーフィッティング) について話しています。 応化:今日は過学習についてです。 生田:過学習?学習し過ぎるってこと? 応化:その通りです。 生田:だったら悪いことじゃなさそうに聞こえ...

階層的クラスタリング(クラスター分析)、近いクラスターを結合していく

応化先生と生田さんが、階層的クラスタリング(クラスター分析)について話しています。 応化:今日は階層的クラスタリングの話をします。 生田:よろしくお願いします。クラスタリングって、クラス分類と名前の似ているアレですよね。...
タイトルとURLをコピーしました