プロセス制御・プロセス管理・ソフトセンサー

小さなデータセットが抱える大きな問題

サンプル数が小さいデータセットには、データ解析で回帰分析やクラス分類をするとき、とてつもなく大きな問題があります。回帰分析やクラス分類における問題というと、精度の高いモデルが構築できないことを想像するかもしれません。 逆です。 精度の高いモ...

このデータセットにはどの距離を用いればよいの??~ユークリッド距離・マンハッタン距離・チェビシェフ距離・マハラノビス距離~

データ解析において、サンプル同士がどれくらい似ているか、サンプル間の類似度を調べるため、距離が用いられます。サンプル間の距離が小さい = 2つのサンプルは似ている、ということです。 距離といってもいろいろあります。たとえば、ユークリッド距離...

モデルの解釈に関する考え方・スタンス

金子研オンラインサロンにおける話題の中から一つ。 Slack で機械学習によって構築されたモデルの解釈に関する質問があり、わたしが回答しました。 質問や回答の詳細は伏せますが (興味のある方はオンラインサロンにご登録くださいw) モデルの解...

主成分分析(Principal Component Analysis, PCA)の前に変数の標準化(オートスケーリング)をしたほうがよいのか?

変数がたくさんある多変量データを解析する前に、変数の標準化 (オートスケーリング) をすることは、こちらに書きました。 データセットの可視化手法であり低次元化手法でもある主成分分析 (Principal Component Analysis...

2018年度「化学プロセスシステム工学」の講義資料を(ほぼ)すべて公開します

2018年度の秋学期において、「化学プロセスシステム工学」の講義を行いました。主にプロセスモデリングやプロセス制御についてです。こここでは、その講義資料の pdf ファイルを公開します。2017年度の講義資料も公開しましたが、資料を改良して...

科研費や助成金やDC1などで採択されたときの申請書を公開します!

これまで科研費だけでなく、いろいろな財団からの助成金をいただき、研究を進めたり研究成果を発表したりしてまいりました。そのお陰様をもちまして、順風満帆に研究を進められております。感謝申し上げます。 研究を進めるためにお金が必要なことは、研究者...

モデルの推定性能を評価しても、その結果で最適化したら評価にならないので注意ですよ!

データ解析とか機械学習とかの話です。こちらの話と関連があります。 たとえば回帰分析で、最小二乗法による線形重回帰分析 (Ordinary Least Squares, OLS) をしたとします。 クロスバリデーションで外部データに対する O...

【失敗例】yの値を推定したいサンプルがモデルの適用範囲内に入るように変数選択と次元削減をすればいいのでは!?

これから書くことか過去の失敗例です。ご注意ください。 回帰モデルでもクラス分類モデルでも、あるデータセットに基づいてモデルが構築されたとします。そのモデルを用いて新しいサンプルの目的変数 y の値を推定するとき、新しいサンプルがモデル構築用...

バリデーション結果は、少数の比較には使ってよいが最適化に使ってはいけない!~外部バリデーションや(ダブル)クロスバリデーションでは何を評価しているのか?評価するときのジレンマとは?~

回帰モデルやクラス分類モデルを評価するときの話です。評価のときに、クロスバリデーションやダブルクロスバリデーションが使われることもありますが、 それぞれ何のために、何を評価しているのか?についてお話します。 そもそも、どうしてモデルを評価し...

サンプルが少ないときはどうするか?・・・うーん、仕方がないのでデータ分布を仮定してたくさんサンプリングしましょう! (多変量の場合)

あまりたくさんの実験ができないとき、あまり多くの分析ができないとき、あまり繰り返しシミュレーションできないときのお話です。 今回は変数が複数 (多変量) のときです。ちなみに変数がひとつ (単変量) のときはこちらです。 多変量でも、データ...
タイトルとURLをコピーしました