データの見える化・可視化をした結果を評価する指標を開発しました、ハイパーパラメータの設定もこれでOK (Python・MATLABプログラムあり) 応化先生と生田さんが論文 “k-nearest neighbor normalized error for visualization and reconstruction – A new measure for data visualiz... 2018.03.10 ケモインフォマティクスケモメトリックスデータ解析プログラミングプロセス制御・プロセス管理・ソフトセンサー論文
アンサンブル学習でも、各サブモデルの適用範囲・適用領域をちゃんと考えよう!~Ensemble learning method Considering Applicability Domain of each Submodel (ECADS)~ 応化先生と生田さんが論文 “Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels”... 2018.02.18 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室論文
アンサンブル学習 ~三人寄れば文殊の知恵~ たくさんモデルを作って推定性能を上げよう! 応化先生と生田さんがアンサンブル学習 (ensemble learning) について話しています。 応化:今日はアンサンブル学習 (ensemble learning) についてです。 生田:アンサンブル?音楽関係ですか? 応化:いえ、合... 2018.02.17 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
k平均法 (k-means clustering) 非階層的クラスタリング 応化先生と生田さんが k平均法 (k-means clustering) について話しています。 応化:今回は、k平均法 (k-means clustering) についてです。クラスタリングですね。 生田:階層的なクラスタリングですか? ... 2018.02.11 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
ロバストなモデル・手法・方法ってどういうこと?推定性能が高い、とは違います! 応化先生と生田さんがロバストなモデルについて話しています。 応化:今回は、ロバスト (robust) についてです。日本語に訳すと、頑健、ですね。 生田:ロバストも頑健も聞いたことがありません! 応化:日常生活ではあまり出てきませんよね。統... 2018.02.10 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
人工知能・機械学習のときには過学習 (オーバーフィッティング) に気をつけよう!~過学習とその対処法~ 応化先生と生田さんが過学習 (オーバーフィッティング) について話しています。 応化:今日は過学習についてです。 生田:過学習?学習し過ぎるってこと? 応化:その通りです。 生田:だったら悪いことじゃなさそうに聞こえるけど・・・。学習をたく... 2018.02.05 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
階層的クラスタリング(クラスター分析)、近いクラスターを結合していく 応化先生と生田さんが、階層的クラスタリング(クラスター分析)について話しています。 応化:今日は階層的クラスタリングの話をします。 生田:よろしくお願いします。クラスタリングって、クラス分類と名前の似ているアレですよね。 応化:そうですね。... 2018.02.03 ケモインフォマティクスケモメトリックスデータ解析研究室
クラス分類とクラスタリング、名前は似ていますが全く異なります たまにクラス分類 (classification) とクラスタリング (clustering) を混同する人がいますが、クラス分類とクラスタリングとは全く別物です。逆の意味で使ってしまうことのないようにするためにも、それぞれの意味合いを押さ... 2018.01.28 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
人の学習と人工知能の学習~人工知能を学習させるとかモデルを構築するということ~ データ化学工学研究室 (金子研) では、化学・化学工学に関する人工知能の研究や人工知能を応用した研究をしています。人工知能は、無から勝手に発生するわけではなく、人工知能を学習させる必要があります。 ただ、特別な “学習” をさせているわけで... 2018.01.27 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー研究室
回帰分析・クラス分類をするときの、モデル構築用データ (トレーニングデータ) とモデル検証用データ (テストデータ) の分け方 [Kennard-Stoneアルゴリズムのコードあり] 回帰分析やクラス分類をするとき、大きな目的の一つは、新しいサンプルに対する推定性能が高いモデルを構築することです。なので、モデルを構築したとき、そのモデルの 新しいサンプルに対する推定性能を検証する必要があります。 今、いくつかのサンプル・... 2018.01.20 ケモインフォマティクスケモメトリックスデータ解析プロセス制御・プロセス管理・ソフトセンサー化学工学研究室